Nav: Home

Gene scissors against incurable muscular disease

January 27, 2020

Muscles need dystrophin in order to regenerate. Persons suffering from Duchenne muscular dystrophy lack this essential muscular protein due to mutations in the gene which is responsible for producing dystrophin. As a result, their existing muscle cells deteriorate over time and are gradually replaced by connective and fatty tissue; muscle strength weakens during the course of the disease. The first symptoms usually appear around the age of five. Children with the disease begin to have difficulties with movements they previously completed with ease, for example climbing stairs or getting up from the floor. At approximately the age of twelve, they are no longer able to walk, later losing movement in their arms and hands. Due to concomitant respiratory and cardiac failure, the majority of patients does not reach the age of 40. DMD affects mainly boys, since the responsible mutations are located in the dystrophin gene on the X chromosome.

Gene scissors remove defective gene sequence

An interdisciplinary Munich research team led by scientists from TUM has for the first time succeeded in correcting the mutated dystrophin gene in living pigs. In order to cut the defective gene sequence from the DNA of the animals' muscle and heart cells, the researchers modified the Crispr-Cas9 gene scissors. "These gene scissors are highly efficient and specifically corrected the dystrophin gene," says Prof. Wolfgang Wurst, developmental geneticist at TUM and the German Research Center for Environmental Health. It became then again possible to viably read the gene which had been unreadable because of the genetic defect, thus allowing for a successful protein biosynthesis. Now the shorter but stably formed dystrophin protein was able to improve muscle function. The animals treated were less susceptible to cardiac arrhythmia and had an increased life expectancy compared to animals with the disease that did not receive the therapy.

A permanent therapy

"Muscle and heart cells are long-lived cell structures. One half of all myocardial cells remain functional from birth throughout the entire lifecycle of a human being," says Prof. Christian Kupatt, cardiologist at university hospital TUM Klinikum rechts der Isar. "The genome of a cell is used for protein biosynthesis as long as the cell is alive, and once a cell has been affected by the therapy, it remains corrected. So if we change the genome of a myocardial cell, the correction is a long-term success, in contrast to the results of previous methods."

Therapeutic success with clinically relevant model

The gene sequence responsible for the dystrophin protein has already been successfully corrected in the past, however in mice and other animal models. "Our results are very promising, since for the first time, we have now been able to demonstrate therapeutic success in a clinically relevant large animal model," says Prof. Maggie Walter, neurologist at the LMU university hospital. In terms of important biochemical, clinical and pathological changes, the pig model mirrors Duchenne muscular dystrophy in humans. "Since the disease proceeds faster in our pig model, we were able to verify the efficacy of the therapeutic approaches within a manageable period of time," says Prof. Eckhard Wolf, LMU specialist in veterinary medicine.
-end-


Technical University of Munich (TUM)

Related Heart Cells Articles:

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.
To repair a damaged heart, three cells are better than one
CardioClusters use three types of cells to reduce scar tissue and improve function by integrating into and persisting within damaged heart tissue.
SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication
Changing what heart cells eat could help them regenerate
Switching what the powerhouses of heart cells consume for energy could help the heart regenerate when cells die.
Heart muscle cells change their energy source during heart regeneration
Researchers from the Hubrecht Institute (KNAW) have found that the muscle cells in the heart of zebrafish change their metabolism during heart regeneration.
Special cells contribute to regenerate the heart in Zebrafish
It is already known that zebrafish can flexibly regenerate their hearts after injury.
Skin-cells-turned-to-heart-cells help unravel genetic underpinnings of cardiac function
A small genetic study, published September 30, 2019 in Nature Genetics, identified a protein linked to many genetic variants that affect heart function.
Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.
A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.
More Heart Cells News and Heart Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.