Nav: Home

Finely tuned nervous systems allowed birds and mammals to adopt smoother strides

January 27, 2020

Since the 1900s, neuroscientists have known that the peripheral nervous systems of tetrapods (four-footed animals) vary greatly, but how these differences affect the way that animals walk, run, or move has not been well understood. Now, a study published in the Journal of Experimental Biology on January 27, authored by a New York Institute of Technology anatomy professor, suggests that neuromuscular adaptations in mammals and birds may have allowed them to become more nimble than reptiles and amphibians.

"This research could explain why tigers have a much smoother walk than crocodiles, which lumber and drag their abdomens, and perhaps one reason why today's humans have evolved to walk with such uniform steps," says lead author Michael Granatosky, Ph.D., assistant professor of Anatomy at New York Institute of Technology College of Osteopathic Medicine (NYITCOM).

Tetrapods have small receptors in their muscles called Golgi tendon organs, which protect muscles from forces during locomotion (walking) and other physical activity. When muscle tension becomes dangerous, these receptors signal the nervous system to produce reflexes that release tension and prevent injury. Amphibians and reptiles, which diverged from early tetrapods before mammals and birds, have freeform Golgi tendons located further from the muscle-tendon junction, suggesting that they detect stress across the entire muscle. In contrast, birds and mammals have encapsulated Golgi tendon organs set directly at the muscle-tendon junction, signifying an ability to detect tension in precise muscle areas, which would allow for more controlled motion. Now, researchers pose that birds and mammals owe their agile strides to these finely tuned receptors.

"These structural variations are well known, but no one has questioned what they actually mean for the animals," says Granatosky. "We studied the largest collection of zoological locomotive data to date, which spanned 30 years and 55 species, and found that these variations directly affect how animals respond to the forces acting on their limbs."

Continuing the work of his post-doctorate mentor Callum Ross, Ph.D., professor of Organismal Biology and Anatomy at the University of Chicago, Granatosky analyzed vast sets of data from zoos and research facilities in the U.S., Canada, and Germany. To survey bodyweight distribution in motion, animal steps were measured with a three-dimensional scale called a force plate. Reptile and amphibian strides were found to vary greatly with each step, but mammals and birds crossed the force plate with very consistent strides. The findings suggest that, while in motion, a predictable response to force provides a selective advantage that could conserve energy and allow birds and mammals to swiftly regain footing from a fall. Granatosky also believes that the less responsive nervous systems of reptiles and amphibians may have caused a need for protection that led the animals to adapt stronger bones.

"Reptile and amphibian bones can sustain forces ten times heavier than their weight, whereas bird and mammal bones can only sustain forces two and a half times their weight. It's possible that birds and mammals adapted lighter, more energy-efficient bone structures in response to no longer needing heavy, protective frames that demanded a great deal of energy," he says.

To test his theory, Granatosky will study whether Golgi tendon organs played an evolutionary role in bone density adaptation and energy expenditure. He is also collaborating with New York Institute of Technology engineering, architecture, and digital arts students to build robots that accurately simulate animal locomotion. The first robot will simulate the walking patterns of the blue-tongued skink, an Australian lizard commonly used as a model for early tetrapod locomotion.
-end-
About New York Institute of Technology

New York Institute of Technology offers 90 undergraduate, graduate, and professional degree programs in more than 50 fields of study, including computer science, data, and cybersecurity; biology and biomedical studies; architecture and design; engineering; health professions and medicine; IT and digital technologies; management; communications and marketing; education and counseling; and energy and sustainability. A nonprofit, independent, private, and nonsectarian institute of higher education, New York Institute of Technology welcomes more than 9,000 students worldwide. The university has campuses in New York City (Manhattan) and Long Island (Old Westbury), New York; Jonesboro, Arkansas; and Vancouver, British Columbia, as well as programs around the world.

New York Institute of Technology embraces its mission to provide career-oriented professional education, give all qualified students access to opportunity, and support research and scholarship that benefit the larger world. More than 100,000 alumni comprise an engaged network of doers, makers, and innovators prepared to change the world, solve 21st-century challenges, and reinvent the future.

New York Institute of Technology

Related Amphibians Articles:

Venom glands similar to those of snakes are found for first time in amphibians
Brazilian researchers discover that caecilians, limbless amphibians resembling worms or snakes that emerged some 150 million years before the latter, can probably inject venom into their prey while biting.
Climate crisis ages fish, amphibians and reptiles
Climatic conditions are changing at an unprecedented rate, affecting mainly fish, amphibians and reptiles, ectothermic animals that are unable to generate their own internal heat.
Dehydration increases amphibian vulnerability to climate change
Amphibians have few options to avoid the underappreciated one-two punch of climate change, according to a new study from Simon Fraser University researchers and others.
First evidence of snake-like venom glands found in amphibians
Caecilians are limbless amphibians that can be easily mistaken for snakes.
'Fang'tastic: researchers report amphibians with snake-like dental glands
Utah State University biologist Edmund 'Butch' Brodie, Jr. and colleagues from Brazil's Butantan Institute describe oral glands in a family of terrestrial caecilians, serpent-like amphibians related to frogs and salamanders.
Microplastics affect the survival of amphibians and invertebrates in river ecosystems
In collaboration with the National Museum of Natural Sciences (CSIC) in Madrid, the UPV/EHU's Stream Ecology research group has conducted two parallel studies to look at how the larvae of one freshwater amphibian and one invertebrate evolved during 15 days' exposure to microplastics at different concentrations.
Zoology: Biofluorescence may be widespread among amphibians
Biofluorescence, where organisms emit a fluorescent glow after absorbing light energy, may be widespread in amphibians including salamanders and frogs, according to a study in Scientific Reports.
Road salt harmful to native amphibians, new research shows
The combined effects of chemical contamination by road salt and invasive species can harm native amphibians, according to researchers at Binghamton University, State University of New York.
When naproxen breaks down, toads croak
A new study in Environmental Toxicology and Chemistry takes a harder look at the effects a common anti-inflammatory medication and its degradation products have on amphibians.
Environmentally friendly control of common disease infecting fish and amphibians
Aquatic organisms in marine systems and freshwaters are threatened by fungal and fungal-like diseases globally.
More Amphibians News and Amphibians Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.