Nav: Home

'Lethal' mutation made tuberculosis bacteria resistant to important antibiotic

January 27, 2020

Antibiotic-resistant tuberculosis is a common and serious problem globally. In a new article, researchers from Uppsala University describe how tuberculosis bacteria that carries a mutation that in theory should kill them manages to stay alive. The researchers discovered that the same trick that kept the bacteria alive also made them resistant to a very important type of antibiotic.

Tuberculosis (TB) kills at least 1.5 million people annually. A normal treatment requires four different antibiotics taken for several months. If one of the drugs does not work there is a great risk of a treatment failure. Unfortunately, antibiotic-resistant TB is now very common globally. For successful treatment it is important to quickly determine which antibiotics the TB bacteria is susceptible to. This diagnosis used to take several weeks, because TB bacteria grow very slowly. With the revolution in DNA sequencing it is nowadays possible to sequence the bacterial DNA and predict which antibiotics it will be susceptible to, all in a matter of a days.

Recently, scientists at Uppsala University found that many clinical TB bacteria contained 'frameshift mutations' in a gene for making an essential protein (RpoB) that is the target of a very important TB antibiotic, rifampicin. This type of mutation should have killed the bacteria, but they were apparently alive and were recovered from TB patients receiving antibiotic treatment. Intrigued by this finding, scientists in Diarmaid Hughes' group at the Department of Medical Biochemistry and Microbiology set out to isolate a similar mutant in E. coli, a bacterial species that is less dangerous and easier to work on experimentally. Their aim was to discover how a 'frameshift mutation' was compatible with life.

Three scientists, Douglas L. Huseby, Gerrit Brandis and Lisa Praski Alzrigat, isolated a 'frameshift mutation' in RpoB and worked out how the bacteria could stay alive. They found that the mutation created a special sequence of rare 'slippery' codons in the RpoB gene. When the ribosome (the machine that makes protein by reading the genetic code) reached this sequence it slipped on the sequence and made mistakes at a very high frequency. This slippage in reading the genetic code suppressed the effect of the 'lethal frameshift mutation' and allowed the bacteria to survive. However, that was not all. Because of the 'suppression' the RpoB protein was mutated and this mutation caused the bacteria to became highly resistant to the antibiotic rifampicin.

There are important lessons from this work. One is that apparently lethal mutations are not always lethal because the bacteria may be able to 'suppress' the mutation and stay alive, and as in this case cause resistance to an important antibiotic against TB. Another, perhaps more important lesson, is that a diagnosis that is based on reading a DNA sequence is only as good as our ability to correctly interpret the meaning of the sequence. These types of 'lethal' mutations that should not be possible are in fact surprisingly common in clinical bacterial isolates, not only TB but also other infections, suggesting that many of them may also be suppressed. The message is that we need to become much better at interpreting the meaning of DNA sequences so that we can ensure that patients can get the correct diagnosis and the appropriate antibiotic treatment.
-end-


Uppsala University

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.