Nav: Home

Getting to the root of plant survival

January 27, 2020

When facing a volatile climate, nature searches for a way to survive. For plants, that often means spreading new roots deeper and wider in search of water, particularly in times of drought. While scientists have recognized the process of root emergence for decades, how intercellular communication may drive this phenomenon was previously unknown.

Now, Jung-Youn Lee, University of Delaware professor of plant molecular and cellular biology, and Ross Sager, a former graduate student and UD alumnus, have identified hormones and proteins that interact to regulate the root emergence process.

Their team's first-of-its-kind study was recently published in the journal Nature Communications.

Plant communication

Plasmodesmata function as the main communication pathways within a plant, sending messages through virtually every cell from root to shoot. Often, each cell receives the new information and this intercellular communication is critical to the plant's survival.

"Picture a brick wall and that's what the surface of a root looks like. Each brick is an individual cell. The cement binding them is the cell wall. Unlike a brick wall, however, plant cells are also linked by fine thread-like nano-tunnels called plasmodesmata, through which cells transmit various signals and messages to share. Obviously, when the channels are closed off, no signals would be transmitted, isolating the cells from getting any messages from their neighbors," said Lee.

When lateral roots, or secondary roots, need to emerge from the primary root, the cells directly above the emerging root must separate from each other to make way. To accomplish this, the plasmodesmata connecting those soon-to-split cells must be closed off so that the new root emerges at a normal speed. If the plasmodesmata remain open, the new root emerges at a faster speed which may compromise the vitality or immunity of the root and cause the plant to be vulnerable to threats from various soil pathogens.

Root emergence regulation

While studying the expression pattern of PDLP5 -- a protein associated with plasmodesmata -- in Arabidopsis seedlings, Sager noticed an unexpected pattern in the roots. Closer examination revealed that the pattern involved cells that were overlying emerging lateral roots.

"I had designed this particular experiment to study PDLP5 expression in the young seedling leaves," said Sager, "but when I noticed that pattern in the roots and showed it to Dr. Lee, we agreed it was unique for a plasmodesmal protein and warranted further research."

Pursuing this intriguing pattern led Sager and Lee to discover a critical feedback loop that seems to allow small subsets of cells to regulate their plasmodesmata connections via PDLP5, allowing them to operate independently from the rest of the plant as the lateral root develops and emerges.

When auxin, the hormone that drives the formation of the lateral root tissue, signals to the plant cells that a new root is ready to form and emerge, it also tells those cells directly overlying the newly forming root to start producing PDLP5. As this protein accumulates, Sager and Lee posit that it closes the plasmodesmata connections, ensuring that these overlying cell layers are able to operate autonomously as they separate and allow the lateral root to pass through. When the process is complete, this research suggests that PDLP5 sends a return signal that represses auxin. After the new lateral root is fully emerged, the overlying cells reopen the plasmodesmata connections, effectively reconnecting to the plant communication pathways.

"While our research suggests that plasmodesmal closure in these cells is important for lateral root emergence, we don't actually know why yet," said Sager. "Does it alter the movement of key signaling components? Prevent harmful factors in the soil from entering the cell? I look forward to other scientists using our paper as a stepping stone to answer these questions."

Opportunity because of climate change

According to Lee, this signaling mechanism and feedback loop could pave the way for groundbreaking advances in plant and crop engineering.

"Understanding the individual components that regulate lateral root emergence, both the sequence and the timing, opens up a lot of opportunity," said Lee. "When there's a drought, plants and crops die because they can't find water quickly and efficiently. One of the mechanisms they use to survive drought is to put down more roots. With this discovery of the communication loop regulating lateral roots, we may eventually be able to control when and how many additional roots a plant can form."

Crops are often adapted to the environments in which they grow. But as climate change continues to make patterns more erratic, like extending dry seasons, plant adaptability will be vital to agricultural production and ecosystem survival. Roots may need to grow at different rates or different times. Lee notes that information on engineering crops to sprout roots like this doesn't yet exist, but identifying specifically how roots emerge is an important first step.

Exploring plant communication at the molecular and cellular levels continues to be the primary focus in Lee's laboratory at the Delaware Biotechnology Institute. Following this study and previous research on cellular communication, Lee and her team are now further exploring PDLP5 and similar proteins.

"PDLP5 has been our lucky break," noted Lee. "That protein opened up so many new paths for us and also for newcomers to explore. It also became a fantastic bridge connecting us to great research collaborators, including Dr. Malcolm Bennett at the University of Nottingham, the world's leading expert on root branching."

"What's next?" Lee continued. "We are currently conducting interdisciplinary research with Dr. Li Liao in computational science and engineering at UD to discover how PDLP5 and its family members find and anchor to plasmodesmata, which is generously funded by the National Science Foundation. We are already so amazed by the path that PDLP5 is leading us."
-end-


University of Delaware

Related Drought Articles:

Redefining drought in the US corn belt
As the climate trends warmer and drier, global food security increasingly hinges on crops' ability to withstand drought.
The cost of drought in Italy
Drought-induced economic losses ranged in Italy between 0.55 and 1.75 billion euros over the period 2001-2016, and droughts caused significant collateral effects not only on the agricultural sector, but also on food manufacturing industries.
Consequences of the 2018 summer drought
The drought that hit central and northern Europe in summer 2018 had serious effects on crops, forests and grasslands.
Songbirds reduce reproduction to help survive drought
New research from the University of Montana suggests tropical songbirds in both the Old and New Worlds reduce reproduction during severe droughts, and this - somewhat surprisingly -- may actually increase their survival rates.
Predicting drought in the American West just got more difficult
A new, USC-led study of more than 1,000 years of North American droughts and global conditions found that forecasting a lack of precipitation is rarely straightforward.
Where is the water during a drought?
In low precipitation periods - where and how is the limited available water distributed and what possibilities are there for improving retention in the soil and the landscape?
What does drought mean for endangered California salmon?
Droughts threatens California's endangered salmon population -- but pools that serve as drought refuges could make the difference between life and death for these vulnerable fish.
With shrinking snowpack, drought predictability melting away
New research from CU Boulder suggests that during the 21st century, our ability to predict drought using snow will literally melt away.
An evapotranspiration deficit drought index to detect drought impacts on ecosystems
The difference between actual and potential evapotranspiration, technically termed a standardized evapotranspiration deficit drought index (SEDI), can more sensitively capture the biological changes of ecosystems in response to the dynamics of drought intensity, compared with indices based on precipitation and temperature.
Sesame yields stable in drought conditions
Research shows adding sesame to cotton-sorghum crop rotations is possible in west Texas
More Drought News and Drought Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.