Nav: Home

Airborne measurements point to low EPA methane estimates in south central US

January 27, 2020

Approximately twice as much methane is seeping into the atmosphere than the Environmental Protection Agency estimates from oil and gas facilities in the south central U.S., according to a series of measurements taken by meteorologists using NASA aircraft.

In six flights through the region, researchers used onboard instruments from two planes to collect data roughly 1,000 feet above ground. They flew through massive methane plumes concentrated by regional weather patterns and used sample points and weather models to determine the actual methane concentrations of the plumes. These concentrated plumes were discovered during the Atmospheric Carbon and Transport-America (ACT-America) campaign, a much broader Penn State led-effort to understand greenhouse sources and sinks.

Researchers found methane from oil and gas facilities to be 1.1 to 2.5 times greater than EPA estimates for the region that includes Arkansas, Texas, Louisiana and Oklahoma. In another key finding, scientists showed how frontal systems in the atmosphere can be used to track methane from much larger areas at the surface because large plumes of methane concentrations come together along the frontal boundary.

"When we flew across cold fronts, one thing we noticed was that warm air was being pulled up and funneling the region's greenhouse gases into large plumes," said Zach Barkley, researcher in meteorology and atmospheric science, Penn State. "We fed data from these plumes into our weather models and, when we compared the data with the EPA inventory, we saw there was a discrepancy."

Methane comes from many sources -- including wetlands, animal agriculture and the oil and natural gas industry -- so researchers used ethane measurements to determine the source. Ethane is primarily found in methane produced by the natural gas industry, so researchers used that to omit methane produced by animal agriculture and other natural sources. The findings are reported in a recent issue of Geophysical Research Letters.

The EPA uses a bottom-up approach to estimate methane emissions from industry by applying a value to each well and transport component. Penn State researchers used a top-down approach, meaning the emissions were measured at their endpoint, the atmosphere.

"The one issue with the bottom-up approach is if you can't sample enough sources to get an accurate representation of the average," Barkley said. "When you multiply by all of the different devices and components across the U.S., you could potentially come up with a number that's not accurate."

The region is important to combating greenhouse gas emissions at large, Barkley said, because it accounts for nearly 40 percent of the man-made methane emissions in the U.S. The region is a hotspot for both natural gas extraction and animal agriculture. Methane is an important greenhouse gas with 34 times the warming potential of carbon dioxide over a 100-year period, according to the Intergovernmental Panel on Climate Change.

Barkley said there are also problems with the top-down approach to measuring methane. It is more expensive and does not identify which sources are emitting methane. He said the approach is more of a check on the accuracy of the existing approach.

But it does point to areas to target for greenhouse gas reduction.

"If oil and gas emissions are off by a factor of two, that means that oil and gas are very significantly the highest man-made source of methane emissions in the U.S. and would be a prime area to target for reducing methane emissions, particularly if we find relatively few sources contributing significantly to the bulk of the emissions," Barkley said. "If we can figure out how to target those sources and fix them, that could be a significant reduction of greenhouse gas emissions coming from the oil and gas industry."
In prior research, Barkley determined EPA estimates for methane from natural gas facilities were also low in a portion of Pennsylvania's Marcellus Shale region.

NASA funded this research.

Penn State

Related Methane Articles:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.
Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.
Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.
Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.
New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.
Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.
More Methane News and Methane Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.