How climate caprices can trigger plants

January 27, 2021

Plants and other organisms can adapt their phenotypes to fluctuating environmental conditions within certain limits. The leaves of the dandelion, for example, are much more small in sunny locations than in shady places. In the sun, less leaf area is adequate to drive sufficient photosynthesis. This makes sense and is part of the dandelion's genetic programming.

However, plants can deviate from their normal programming if they are under constant heat stress or other extreme factors that endanger their survival. They then develop, for example, a wide range of leaf shapes that are extremely rare under natural conditions. In this case, scientists speak of "hidden reaction norms".

Pitcher plants cultivated in growth chambers

The influences that cause these reactions have been largely unknown until now. But especially in view of climate change, researchers would like to find answers to this question.

An international research team now shows in the journal Proceedings of the Royal Society B what variety of malformed leaves the carnivorous Australian pitcher plant Cephalotus follicularis can form. To tease out these hidden reaction norms, they subjected the plants for twelve weeks to different conditions in growth chambers.

"The hidden reaction norms of this plant could be revealed when uncommon combinations of benign or neutral environmental stimuli prevail," says biologist Dr Kenji Fukushima from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany. Then the plant deviates from its normal programming, according to which it either forms flat, photosynthetically active leaves or leaves transformed into insect traps.

Reaction to short days with high temperatures

If the plants grew in summer temperatures but with only a few hours of light, they increasingly formed misregulated leave phenotypes. These are exactly the conditions that are becoming more common in many regions of the world due to climate change: Short spring or autumn days which are too warm for the season.

The conclusion of Dr Fukushima and his co-authors from the National Institute for Basic Biology in Okazaki (Japan): "Climate change may challenge organismal responses through not only extreme cues but also through uncommon combinations of benign cues."

University of Würzburg

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to