A mild way to upcycle plastics used in bottles into fuel and other high-value products

January 27, 2021

Plastic is ubiquitous in people's lives. Yet, when plastic-containing items have fulfilled their missions, only a small amount is recycled into new products, which are often of lower quality compared to the original material. And, transforming this waste into high-value chemicals requires substantial energy. Now, researchers reporting in ACS' JACS Au have combined a ruthenium-carbon catalyst and mild, lower-energy reaction conditions to convert plastics used in bottles and other packaging into fuels and chemical feedstock.

Global production of sturdy, single-use plastic for toys, sterile medical packaging, and food and beverage containers is increasing. Polyolefin polymers, such as polyethylene and polypropylene, are the most common plastics used in these products because the polymers' molecular structures -- long, straight chains of carbon and hydrogen atoms -- make materials very durable. It's difficult to degrade the carbon-to-carbon bonds in polyolefins, however, so energy-intensive procedures using high temperatures, from 800 to 1400 F, or strong chemicals are needed to break down and recycle them. Previous studies have shown that noble metals, such as zirconium, platinum and ruthenium, can catalyze the process of splitting apart short, simple hydrocarbon chains and complicated, plant-based lignin molecules at moderate reaction temperatures requiring less energy than other techniques. So, Yuriy Román-Leshkov and colleagues wanted to see if metal-based catalysts would have a similar effect on solid polyolefins with long hydrocarbon chains, disintegrating them into usable chemicals and natural gas.

The researchers developed a method to react simple hydrocarbon chains with hydrogen in the presence of noble- or transition-metal nanoparticles under mild conditions. In their experiments, ruthenium-carbon nanoparticles converted over 90% of the hydrocarbons into shorter compounds at 392 F. Then, the team tested the new method on more complex polyolefins, including a commercially available plastic bottle. Despite not pretreating the samples, as is necessary with current energy-intensive methods, they were completely broken down into gaseous and liquid products using this new method. In contrast to current degradation methods, the reaction could be tuned so that it yielded either natural gas or a combination of natural gas and liquid alkanes. The researchers say implementing their method could help reduce the volume of post-consumer waste in landfills by recycling plastics to desirable, highly valuable alkanes, though technology to purify the products is needed to make the process economically feasible.
-end-
The authors acknowledge funding from the U.S. Department of Energy's Office of Energy Efficiency & Renewable Energy, Advanced Manufacturing Office and Bioenergy Technologies Office.

The paper is freely available as an ACS AuthorChoice article here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.  

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.  

Follow us: Twitter | Facebook

American Chemical Society

Related Natural Gas Articles from Brightsurf:

Study reveals how to improve natural gas production in shale
A new hydrocarbon study contradicts conventional wisdom about how methane is trapped in rock, revealing a new strategy to more easily access the valuable energy resource.

A new material for separating CO2 from industrial waste gases, natural gas, or biogas
With the new material, developed at the University of Bayreuth, the greenhouse gas carbon dioxide (CO2) can be specifically separated from industrial waste gases, natural gas, or biogas, and thereby made available for recycling.

Study of natural gas flaring finds high risks to babies
Researchers from USC and UCLA have found that exposure to flaring -- the burning off of excess natural gas -- at oil and gas production sites is associated with 50% higher odds of preterm birth, compared with no exposure.

Sweet or sour natural gas
Natural gas that contains larger amounts of hydrogen sulfide (H(2)S) and carbon dioxide (CO(2)) is termed sour gas.

Visualizing chemical reactions, e.g. from H2 and CO2 to synthetic natural gas
Scientists at EPFL have designed a reactor that can use IR thermography to visualize dynamic surface reactions and correlate it with other rapid gas analysis methods to obtain a holistic understanding of the reaction in rapidly changing conditions.

Effects of natural gas assessed in study of shale gas boom in Appalachian basin
A new study estimated the cumulative effects of the shale gas boom in the Appalachian basin in the early 2000s on air quality, climate change, and employment.

The uncertain role of natural gas in the transition to clean energy
A new MIT study examines the opposing roles of natural gas in the battle against climate change -- as a bridge toward a lower-emissions future, but also a contributor to greenhouse gas emissions.

Natural-gas leaks are important source of greenhouse gas emissions in Los Angeles
Liyin He, a Caltech graduate student, finds that methane in L.A.'s air correlates with the seasonal use of gas for heating homes and businesses

Enhanced natural gas storage to help reduce global warming
Researchers have designed plastic-based materials that can store natural gas more effectively.

Natural gas storage research could combat global warming
To help combat global warming, a team led by Dr.

Read More: Natural Gas News and Natural Gas Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.