Growth of northern Tibet proved the key to East Asian biodiversity

January 27, 2021

Pioneering work led by a joint China-UK consortium has revealed the origin of one of the world's most important ecosystems, the East Asian biodiversity "hotspot," thus solving a longstanding riddle as to what prompted its formation and evolution.

In a recent study published in Science Advances, a joint research team led by scientists from Xishuangbanna Tropical Botanical Garden (XTBG) of the Chinese Academy of Sciences, the University of Bristol (UK) and the Open University (UK) has revealed the first direct mechanism explaining how the growth of mountains in Northern Tibet drastically altered climate, vegetation and plant diversity in East Asia.

The researchers used an innovative climate model that simulates vegetation and plant diversity, coupled with spectacular new fossil finds, to demonstrate Northern Tibet's importance in transforming what was previously near desert into lush forests.

"We approached this question by integrating modeling results and fossil data," said Dr. LI Shufeng from XTBG, lead author of the study.

The researchers conducted 18 sensitivity experiments using different Tibetan topographies representing various late Paleogene to early Neogene conditions, which tested almost all possible Tibetan orographic evolution scenarios.

They found that from the late Paleogene to the early Neogene (40-23 million years ago), the growth of the north and northeastern portion of Tibet was the most important factor in the development of biodiversity, because it increased rainfall, especially winter rainfall, over East Asia where previously dry winter conditions had existed. This allowed the development of a stable, wet and warm climate that was vital for a variety of unique plants and animal species to evolve in vast numbers, creating what we know today as a biodiversity hotspot. Today, it is one of the world's natural medicinal cabinets and a source of important new pharmaceutical drugs.

According to Prof. Paul J. Valdes of the University of Bristol, most previous studies attempting to identify the source of this hotspot focused on southern Tibet and the Himalaya. But Valdes said the rise of northern Tibet was the key.

"The topography of northern Tibet decreases the East Asian winter monsoon winds in the southern part of China, causing wetter winters in eastern Asia and this allows the expansion of vegetation and biodiversity," said Valdes.

So enigmatic was the change that even in Chinese folklore this area is known as the "land of fish and rice," due to its agricultural wealth, fertile soils, pleasant climate and variety of unique species.

"If there was no northern Tibetan growth, there would be no 'land of fish and rice' in eastern Asia," said Prof. ZHOU Zhekun from XTBG.

Chinese Academy of Sciences Headquarters

Related Biodiversity Articles from Brightsurf:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?

Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.

Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.

Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.

Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.

Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.

Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.

Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.

Read More: Biodiversity News and Biodiversity Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to