Cell death shines a light on the origins of complex life

January 27, 2021

Organelles continue to thrive after the cells within which they exist die, a team of University of Bristol scientists have found, overturning previous assumptions that organelles decay too quickly to be fossilised.

As described in the journal Sciences Advances today [27 January], researchers from Bristol's School of Earth Sciences were able to document the decay process of eukaryotic algal cells, showing that nuclei, chloroplasts and pyrenoids (organelles found within chloroplasts) can persist for weeks and months after cell death in eukaryote cells, long enough to be preserved as fossils.

Emily Carlisle, a PhD student from Bristol's School of Earth Sciences and co-author, was able to characterise the transformation of the organelles into something resembling snot. She said: "I spent several weeks photographing algal cells as they decayed, checking the condition of the nuclei, chloroplasts and pyrenoids. From this, we could tell that these organelles don't decay immediately after cell death, but actually take many weeks to dissolve."

When life first appeared on Earth it was limited to simple bacteria. Two billion years later, complex life emerged in the form of large eukaryote cells with membrane-bound organelles, such as a nucleus and chloroplasts. The evolution of fungi, plants and animals followed.

However, precisely when complex life emerged has proved difficult to say. Previous genomic studies suggested that eukaryote cells could have evolved anywhere from 800 million to 1,800 million years ago, an imprecise range that needs fossils to narrow it down.

"The evolution of eukaryotes was a hugely important event in the history of life on Earth, but fossils of these cells are difficult to interpret," said Professor Phil Donoghue, expert in molecular palaeobiology and one of the co-authors of the study. "Some of them have structures that could be organelles, but there's long been this assumption that organelles cannot be preserved because they would decay too quickly."

Although living eukaryotes include large forms that are easily spotted, early eukaryotes were predominantly single cells, difficult to distinguish from bacterial cells.

Historically, large size and intricate cell walls have been used to identify early eukaryotes, but some bacteria can attain large size, and cell wall decorations might be lost to the ravages of time and erosion. Organelles such as nuclei and chloroplasts are not found in bacteria, and would therefore be a definitive indicator of complex life, but they have been assumed to decay too quickly to be fossilised.

The results of these experiments shed light on the controversial fossils of early complex life that include structures within the cells. Dr John Cunningham, a Bristol co-author, said: "The structures in Shuiyousphaeridium, a fossil from 1,700 million years ago, closely resemble nuclei. This interpretation has previously been dismissed because of the assumed rapid decay of nuclei. Our decay experiments have shown that nuclei can persist for several weeks, meaning the structures in Shuiyousphaeridium are likely to be nuclei."

By revealing the decay patterns of organelles, the study's authors say they can demonstrate the presence of complex life to 1,700 million years ago, helping to elucidate their evolutionary history with greater precision and clarity.

University of Bristol

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.