Mammogram-based breast cancer risk model could lead to better screening guidelines

January 27, 2021

A new machine learning algorithm based on mammograms can estimate the risk of breast cancer in women more accurately than current risk models, according to a study from Adam Yala and colleagues. The algorithm, which was tested with datasets from three large hospitals located worldwide, could help clinicians design guidelines for breast cancer screening that meet the need for early detection while reducing false-positives, test costs, and other issues associated with overscreening. Mammograms are the most common method to screen for breast cancer, as more than 39 million procedures are performed in the U.S. annually. However, their widespread adoption has not gone without controversy. Critics charge that aggressive screening results in untenable medical costs, higher anxiety in patients, and a substantial rate of false positives. On the other hand, supporters of frequent testing argue it is necessary to detect tumors as early as possible, and the disagreement has led to inconsistent guidelines for when screening should start and how frequent it should be. Yala et al. theorized that improving the accuracy of the risk models that inform guidelines could lead to better recommendations. They designed and trained a new model named Mirai, which integrates data from mammograms to produce consistent breast cancer risk assessments at multiple time points, such as within 1 year or 5 years. When independently tested with data from 106,615 patients from three hospitals, located in the U.S., Sweden, and Taiwan, Mirai identified 41.5% of patients who would develop cancer within 5 years. In contrast, current approaches such as the Tyrer-Cuzick and Hybrid Deep Learning models only identified 22.9% and 36.1% of patients, respectively. Mirai was also effective across various races and ethnicities, supporting its potential to inform screening guidelines for large and diverse populations.
-end-


American Association for the Advancement of Science

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.