New Clues To Evolution Of Human Brain

January 27, 1999

In her quest to examine the contents of consciousness, a scientist at The Johns Hopkins University has produced new evidence of the evolutionary path from the monkey brain to the human.

Susan Courtney, an assistant professor of psychology, recently reported that she had pinpointed the place where the human brain stockpiles information about spatial relationships for short-term use.

It was not where anyone expected.

Until recently, many scientists argued that storage depots for short-term memory (called "working memory") in humans were probably located in the same place as in monkeys; memory of spatial relationships was thought to be stored in the top half of the frontal cortex and memory of objects was stored in the bottom half.

But using a relatively new brain-mapping technology called functional magnetic resonance imaging (fMRI*), Courtney discovered that the human brain has a dedicated place for spatial working memory located further back in the brain anatomy.

"Until now, it's been rather controversial," Courtney said, "because people have based their theories about human brain physiology on what they have seen in non-human primates. And yet when scientists went looking for a particular place for spatial working memory in humans, they couldn't find it. But now, with the help of new technologies such as fMRI, we can see where the human brain handles some of its short-term storage."

"The difference has interesting implications for human brain evolution," Courtney said.

"The comparison indicates that there has been a great expansion of the frontal cortex in the evolution from monkeys to humans, pushing this older area, reserved for spatial memory, out of the way," she said. "Of course, one of the big questions is what replaced it. From the imaging work and from studies of people with damage to that part of the brain, it looks as if these 'new' areas are involved in functions that are, if not uniquely human, then greatly more developed in humans -- for example, abstract reasoning, planning for the future, and manipulation of information."

In the past, researchers who wanted detailed studies of human brain activity struggled because they lacked effective investigative tools. In experiments with people, two of the best technologies brought only limited success in mapping the processes of consciousness. An EEG (electroencephalogram), for example, could not pinpoint where brain signals were coming from, and PET (positron emissions tomography) required radioactive tracers, which limited the exposure times of subjects. PET was also restricted because it could only provide an image of brain activity integrated over a minute or two.

Consequently, researchers have relied on monkeys who have undergone invasive surgery and the implantation of electrodes into the brain for monitoring biological activity. For that reason, the primate brain has served as the model for understanding some of the finer aspects of human brain performance.

Functional MRI, however, can be used repeatedly on human subjects without causing harm or relying on invasive procedures. Plus, the resolution is so good that scientists like Courtney can observe changes in the brain every few seconds, allowing them to chart neural activity nearly in real time.

For Courtney, who is discretely examining what she calls "the contents of consciousness," functional imaging has advanced her work considerably. Besides revealing clues about human brain evolution, her latest work with functional imaging also revealed that the process of retrieving short-term memories of faces shares the same physical mechanism in the brain as that for retrieving long-term memories of faces -- forcing yet another wedge into the mysteries of consciousness.

"It's great uncharted territory," she said. "But we're beginning to make a lot of progress."

Her work was funded by the National Institute of Mental Health and reported in the Philosophical Transactions of the Royal Society of London.

(* Functional magnetic resonance imaging (fMRI) is based on the fact that neural activity causes an increase in blood flow, which in turn increases blood oxygenation. The technology maps the brain by charting the relative increase in oxygenated hemoglobin while researchers conduct various experiments on their subjects that may, for example, task memory or test senses.) Back to the top
-end-
Related Web Sites:


Neuropsychology Central


Consciousness and Neuroscience



Johns Hopkins University

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.