Findings could aid efforts to harness nature for making drugs

January 28, 2004

WEST LAFAYETTE, Ind. - Chemical engineers at Purdue University have shown how to make yeast cells double the activity and boost productivity of a type of enzyme plants need to create important chemicals such as anticancer compounds.

The work is related to efforts aimed at developing techniques to use plants and microorganisms as natural factories for producing pharmaceuticals. Such techniques would be safer and more environmentally friendly than conventional methods for making drugs, which often require hazardous chemicals and steel "reactors" operated at high pressures and temperatures. The enzymes from plants and other organisms typically function in water near room temperature under ordinary pressure.

The Purdue researchers demonstrated that altering the nutrients and carefully controlling fermentation time caused yeast cultures to produce an enzyme called ferulate 5-hydroxylase that has twice its normal rate of activity, which increases the enzyme's productivity.

"Activity relates to the amount of product that can be synthesized in a given time," said John Morgan, an assistant professor of chemical engineering at Purdue. "So we could make more than twice the amount of product per hour."

Findings are detailed in a paper appearing in the Jan. 20 issue of the journal Biotechnology and Bioengineering, published by John Wiley & Sons Inc. The paper was written by Morgan and Purdue doctoral student Hanxiao Jiang.

The enzyme is a member of a family of enzymes called cytochrome P450, which plants need to produce numerous chemical compounds.

Plants ordinarily produce small quantities of "flavonoids," which are beneficial chemicals known as antioxidants. So researchers are developing ways to boost production of the chemicals by transferring vital enzymes from plants to microorganisms. Because P450 enzymes are "biocatalysts" that enable an organism to produce the beneficial drugs, researchers are trying to develop techniques that cause plants to make greater quantities of the enzymes and enzymes that are more productive.

The method pursued by the Purdue researchers was to focus on a gene responsible for producing ferulate 5-hydroxylase.

Altering the composition of nutrients fed to the yeast cultures and controlling the fermentation time caused the gene to be "expressed," producing 45 percent more of the enzyme while doubling the enzyme's activity.

Increasing the quantity and activity of various cytochrome P450 enzymes might enable scientists to use plants and microorganisms like E. coli and baker's yeast to one day commercially produce pharmaceuticals. More progress is needed, however, before it will be practical to use plants and plant enzymes in microorganisms as natural pharmaceutical factories, Morgan said.

"I wouldn't consider this a major breakthrough, but it does represent significant progress in improving the expression of the enzyme," he said. "I think there is certainly room for greater expression of these P450 enzymes."

The same technique could be used to increase the production of other P450 enzymes, Morgan said.

"The plant kingdom contains a large and relatively untapped diversity of P450s that are needed to create thousands of valuable natural products," he said.

In ongoing work, the Purdue researchers also are trying to develop methods for coaxing the enzymes to make drugs not normally produced by plants.

"We are feeding them what's known as substrate analogs, or compounds that are structurally similar to the compound that this enzyme will normally recognize and react with but are somewhat structurally different," Morgan said. "Therefore, if the enzyme recognizes this compound, it will produce a novel product, or a product that's never been synthesized before.

"From a scientific standpoint, we want to better understand precisely how organisms make certain compounds, and from an engineering standpoint, we want to devise a strategy for manipulating the organism so that it makes the chemicals we want it to make."
-end-
Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: John Morgan, 765-494-4088, jamorgan@ecn.purdue.edu

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, 765-494-4709, venere@purdue.edu

Related Web site:

John Morgan: https://engineering.purdue.edu/ChE/Directory/Faculty/Morgan.html

ABSTRACT

Optimization of an In Vitro Plant P450 Monooxygenase System in Saccharomyces cerevisiae

Hanxiao Jiang, John A. Morgan

School of Chemical Engineering, Purdue University

Cytochrome P450s are heme-thiolate oxygenases involved in a wide number of reactions such as epoxidation, hydroxylation, and demethylation. Heterologously expressed eukaryotic P450s are potentially useful biocatalysts for stereospecific oxygenation reactions under mild conditions. Numerous factors, such as intracellular pH, cytochrome P450, cytochrome P450 reductase, NADPH, and oxygen concentration all influence the in vivo activity. To systematically examine these factors, we selected ferulate 5-hydroxylase (F5H), a plant P450, with the Saccharomyces cerevisiae WAT11 strain as an expression host. Two media compositions and two cultivation procedures were investigated to optimize the in vivo activity of F5H. We modified a previously published selective growth medium (Pompon et al. [1996] Methods Enzymol 272: 51-64) that increased the specific growth rate and cell yield of the host strain. A cultivation procedure with separate growth and induction stages that each contain selective media resulted in a 45 percent increase of whole cell F5H specific activity. In a medium designed for simultaneous growth and induction, we observed a 2.6-fold higher specific F5H activity, but substantially lower cell yield. Surprisingly, in this medium the higher specific F5H activity did not correlate with a higher P450 concentration. The effects of addition of the first committed heme precursor, _amino-levulinic acid, and FE (III) at the beginning of induction period were also studied for our two-stage procedure. A small, but significant (P < 0.05) increase in whole cell F5H activity was observed following ALA addition.

Purdue University

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.