Nav: Home

Researchers identify earliest known protein needed for cell division

January 28, 2017

EUGENE, Ore. -- Jan. 30, 2017 -- Researchers from three U.S. universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.

When the protein is damaged, cell division goes awry in ways that mirror conditions associated with human cancers, microcephaly and ciliopathies such as Bardet-Biedl and oral-facial-digital syndromes that involve myriad abnormalities throughout the body.

The discovery of the protein in C-elegans, a tiny nematode, is detailed in a paper published in January by the journal eLife. The mutant protein, dubbed sas-7, was found 17 years ago in the lab of co-author Bruce Bowerman, who now heads of the Department of Biology at the University of Oregon.

Using high-resolution transmission electron microscopy in collaboration with James Priess at the Fred Hutchinson Cancer Research Center in Seattle, the researchers were able to circle back to study centrioles at an ultrastructural level. The analysis identified a centriolar structure dependent on the protein -- called a paddlewheel for its shape -- that is vital for proper cell division in the worms. Similar structures have been observed in other animals but their functional importance was not known.

"The bottom line is that we've discovered a protein that acts at the earliest step known in centriole duplication," said Bowerman, a member and former head of the UO Institute of Molecular Biology. "Finding this protein provides a key advance in our understanding centriole duplication, which is critical to cell division and cilia function in animals. We also have attained new structural insights into the molecular organization of these fascinating structures."

The research focused on mitosis, the process by which a single cell divides to make two daughter cells. Each daughter cell inherits identical copies of the organism's genetic code -- its biological instruction manual.

Vital to cell division is the presence of two pairs of centrioles, located near the nucleus of each cell, that organize rigid fibers called microtubules into a bipolar structure. This bipolar structure, called the mitotic spindle, separates duplicated chromosomes such that each daughter receives one copy of each chromosome.

Just as the DNA in chromosomes must be duplicated before cell division, so are the centrioles, which are complex assemblies of many different proteins. While chromosome duplication is well understood, centriole duplication remains mysterious.

When sas-7 is damaged, centriole duplication fails and a cell has only one centriole. As a result, a monopolar spindle forms and chromosomes are not separated into daughter cells. In addition, the structural integrity of the centriole's paddlewheel is compromised. "We think this paddlewheel is an important structural component of centrioles and may be a key part of how centrioles duplicate," Bowerman said.

Co-lead author Danielle R. Hamill, now a professor of zoology at Ohio Wesleyan University, had found the mutant protein while she was a postdoctoral researcher at the UO. Over the years, she returned to the UO to work with Bowerman to keep probing the role of sas-7.

"There have been previously identified proteins, including some with similar names, sas-1 through 6, all of which were identified more than 20 years ago. All have since been found to be conserved in humans," Bowerman said.

Previously, one of those proteins discovered earlier, spd-2, had been identified as the earliest-acting protein in mitotic cell division. Bowerman's team, co-led by current UO postdoctoral researcher Kenji Sugioka, determined that sas-7 is active upstream from spd-2.

"C-elegans has been the one model organism where the pathway of centriole duplication has been worked out and found to be conserved in all animals," Bowerman said. "We don't know how sas-7 is doing its job, but it does provide us with a new player in this pathway and may help us understand how cells know how to divide into two over and over, and accurately."
-end-
Co-authors on the paper with Bowerman, Hamill, Priess and Sugioka were Joshua B. Lowery, a former doctoral student in the UO's Institute of Molecular Biology, and Marie E. McNeely, Molly Enrick, Alyssa C. Richter and Lauren E. Kiebler, former and current students of Hamill's at Ohio Wesleyan.

Separate National Institutes of Health grants to Hamill, Bowerman and Priess primarily funded the work. Sugioka was supported by a Human Frontier Science Program grant from the France-based International Human Frontier Science Program Organization and a Journal of Cell Science travel fellowship.

Source: Bruce Bowerman, professor and head, Department of Biology, 541-346-0853, bowerman@uoregon.edu, and Danielle Hamill, Department of Zoology, Ohio Wesleyan University, 740-368-3888, drhamill@owu.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

About Bowerman: http://molbio.uoregon.edu/bowerman/
Institute of Molecular Biology: http://molbio.uoregon.edu/
Department of Biology: http://biology.uoregon.edu/
Bowerman lab: http://www.molbio.uoregon.edu/~bowermanlab/

University of Oregon

Related Cell Division Articles:

Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
Researchers identify earliest known protein needed for cell division
Researchers from three US universities have identified, using roundworms, the earliest-acting protein known to duplicate the centriole, a tiny cylinder-shaped structure that is a key component of the machinery that organizes cell division in animals.
Study finds new target for controlling cell division
Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency when a cell is ready to split.
Calcium aids chromosome condensation prior to cell division
Research led by the University of Osaka found that calcium ions help maintain the structure of chromosomes during mitosis by promoting their condensation.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
More Cell Division News and Cell Division Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.