Nav: Home

Yale-NUS undergraduates part of team that finds two theoretical physics models to be equivalent

January 28, 2018

Two Yale-NUS College undergraduates are part of a research team that concluded that two different mathematical models, which describe the same physical phenomenon, are essentially equivalent. The discovery could have implications for future research into magnetoresistance and its practical applications in a wide range of electronic devices. After implementing the two different models of magnetoresistance as computer simulations, Lai Ying Tong, 21, and Silvia Lara, 22, found that the two simulations produced similar results under identical conditions. Magnetoresistance is a physical phenomenon where the electric resistivity of a material changes when subjected to a magnetic field. The research was published in the peer-reviewed journal Physical Review B in December 2017, and presented at international conferences in 2016 and 2017.

The two Yale-NUS undergraduate students worked on the project under the mentorship of Associate Professor Shaffique Adam from Yale-NUS College and the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, and Associate Professor Meera Parish from Monash University. They were guided by Navneeth Ramakrishnan, a Masters student at the Department of Physics at the NUS Faculty of Science and NUS Centre for Advanced 2D Materials, who checked their results and wrote the paper. The findings provided a unified theoretical framework to understand a phenomenon known as 'linear unsaturating magnetoresistance', as well as clear predictions on how to manipulate the effect. Prior to their research, two separate theoretical mathematical models had been proposed to describe how the phenomenon works: the Random Resistance Network (RRN) model and the Effective Medium Theory (EMT) model. Empiricists exploring magnetoresistance generally refer to either of these two models to contextualise their experiments, but do not provide a detailed comparison between the theories and their experimental results. This latest finding not only unifies the two existing theories, but also validates that these theories are accurate descriptions which match with experimental data.

The findings have a direct impact on future research into magnetoresistance, which has practical applications in a diverse range of electronic devices, such as speed sensors, mobile phones, washing machines, and laptops. The principles of magnetoresistance are currently used in magnetic memory storage in hard drives, and certain companies are aiming to produce sensitive magnetometers - devices which measure magnetic fields - that can operate at room temperatures. This is a billion dollar industry which supports applications in many aspects of everyday life ranging from automobile collision warnings to traffic light burnout detection.

Ms Lai and Ms Lara began this research as a summer research project in their first year of undergraduate education, under the guidance of Assoc Prof Adam, who is also with the Centre for Advanced 2D Materials at NUS. Assoc Prof Adam highlighted both students' roles in the research, noting that they reviewed existing literature, implemented the mathematical models in the industry-standard software environment MATLAB, as well as ran the simulations and the subsequent analyses. The students also presented the research findings at international conferences, such as the American Physical Society March Meeting 2017.

Yale-NUS College funded the undergraduate students to work on this project. "This level of undergraduate engagement, not only in the research, but in shaping the direction of the work is extremely rare. At Yale-NUS, science students are able to actively participate in such research very early on in their learning experience," said Assoc Prof Adam.

Yale-NUS College

Related Magnetoresistance Articles:

Mixed valence states in lead perovskites
Scientists at Tokyo Institute of Technology, the Kanagawa Academy of Science and Technology have reported an unusual charge distribution of Pb2+Pb4+3Co2+2Co3+2O12 for a perovskite PbCoO3 synthesized at 12 GPa, with charge orderings in the A and B sites of an ABO3 perovskite.
Gray tin exhibits novel topological electronic properties in 3-D
In a surprising new discovery, alpha-tin, commonly called gray tin, exhibits a novel electronic phase when its crystal structure is strained, putting it in a rare new class of 3-D materials called topological Dirac semimetals (TDSs).
Spintronic technology advances with newly designed magnetic tunnel junctions
Magnetic tunnel junctions (MTJs) have played a central role in spintronic devices, and researchers are working to improve their performance.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Single atom memory: The world's smallest storage medium
One bit of digital information can now be successfully stored in an individual atom.
Smart multi-layered magnetic material acts as an electric switch
The nanometric-size islands of magnetic metal sporadically spread between vacuum gaps display unique conductive properties under a magnetic field.
Cerium hexaboride challenges physicists to come up with new theory
Cerium hexaboride is strongly correlated materials. Up to now, many theories have been proposed to explain the anomalous physical properties of cerium hexaboride, but they all proved unable to predict the results of ESR experiments.
Ultrafast imaging reveals existence of 'polarons'
Scientists find definitive evidence that the movement of electrons has a direct effect on atomic arrangements, driving deformations in a material's 3-D crystalline lattice in ways that can drastically alter the flow of current.
R&D collaboration in integrated electronic systems receives top award
Tohoku University's Tetsuo Endoh, Tokyo Electron Limited's Gishi Chung and Keysight Technologies Inc.'s Masaki Yamamoto have been awarded Japan's Prime Minister's Award for Contribution to Industry-Academia-Government Collaboration.
Research team led by NUS scientists develop plastic flexible magnetic memory device
Associate Professor Yang Hyunsoo from the National University of Singapore led a research team to successfully embed a powerful magnetic memory chip on a flexible plastic material.

Related Magnetoresistance Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...