Nav: Home

How ion adsorption affects biological membranes' functions

January 28, 2019

In a new study published in EPJ E, Izabela Dobrzy?ska from the University of Bia?ystok, Poland, develops a mathematical model describing the electrical properties of biological membranes when ions such as calcium, barium and strontium adsorb onto them at different pH levels. These factors need to be taken into account when studying the diverse phenomena that occur at the lipid membrane in living cells, such as ion transport mechanisms.

Ions with two positive electrical charges, such as calcium ions, play a key role in biological cell membranes. The adsorption of ions in solution onto the membrane surface is so significant that it affects the structural and functional properties of the biological cells. Specifically, ions interact with surface molecules such as a double layer of lipids, or liposomes, formed from phosphatidylcholines (PC). In a new study published in EPJ E, Izabela Dobrzy?ska from the University of Bia?ystok, Poland, develops a mathematical model describing the electrical properties of biological membranes when ions such as calcium, barium and strontium adsorb onto them at different pH levels. Her works helps shed light on how ion adsorption reduces the effective surface concentration of add-on molecules with a specific function that can take part in biochemical reactions. These factors need to be taken into account when studying the diverse phenomena that occur at the lipid membrane in living cells, such as ion transport mechanisms.

The equilibrium at the membrane surface can be changed by the ion adsorption levels, leading to variations in the membrane surface charge density. Using a method called microelectrophoresis, the author experimentally determines the surface charge density as a function of pH. She then develops a mathematical model of the surface charge density to identify the equilibrium, and finds that her model agrees with experimental data.

Dobrzy?ska finds that calcium ions have a greater ability to adsorb onto the lipid bilayer of the biological membrane than barium ions. In addition, she observes that ions containing hydroxide endings are adsorbed onto the membrane more readily than positively charged metal ions, like strontium. Ions' adsorption onto the surface of the liposomes may affect their movement through the cell membrane, and with it, the delivery of the substances they carry.

Reference
-end-
I. Dobrzy?ska (2019), Association equilibria of divalent ions on the surface of liposomes formed from phosphatidylcholines, Eur. Phys. J. E, 2018, 42:3. DOI 10.1140/epje/i2019-11762-6

Springer

Related Calcium Articles:

A docking site per calcium channel cluster
In our brain, information is passed from one neuron to the next at a structure called synapse.
Astrophysicists discovered a star polluted by calcium
An international team of astrophysicists led by a scientist from the Sternberg Astronomical Institute of the Lomonosov Moscow State University reported the discovery of a binary solar-type star inside the supernova remnant RCW 86.
Daily reminders to increase calcium intake are effective
Mary Jung, an assistant professor of health and exercise sciences at UBC's Okanagan campus, recently completed a nationwide study with more than 730 Canadians who were not meeting Canada's recommended dietary intake for calcium.
New guideline on calcium and vitamin D supplementation
A new evidence-based clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology says that calcium with or without vitamin D intake from food or supplements that does not exceed the tolerable upper level of intake should be considered safe from a cardiovascular standpoint.
Calcium induces chronic lung infections
The bacterium Pseudomonas aeruginosa is a life-threatening pathogen in hospitals.
Calcium supplements may damage the heart
After analyzing 10 years of medical tests on more than 2,700 people in a federally funded heart disease study, researchers at Johns Hopkins Medicine and elsewhere conclude that taking calcium in the form of supplements may raise the risk of plaque buildup in arteries and heart damage, although a diet high in calcium-rich foods appears be protective.
Physics researchers question calcium-52's magic
After a multi-institution team's work computing the calcium-48 nucleus, researchers moved on to a larger, heavier, and more complex isotope -- calcium-52 -- and the results surprised them once again.
Study paves way for new therapies in fight against calcium disorders
A study led by researchers at Georgia State University provides new insights into the molecular basis of human diseases resulting from mutations in the calcium-sensing receptor, a protein found in cell membranes.
Calcium channels team up to activate excitable cells
Voltage-gated calcium channels open in unison, rather than independently, to allow calcium ions into and activate excitable cells such as neurons and muscle cells, researchers with UC Davis Health System and the University of Washington have found.
A calcium pump caught in the act
Researchers at Aarhus University have described one of the cell's key enzymes, the calcium pump, in its decisive moment -- a so-called transition state.

Related Calcium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".