Nav: Home

Aerosol-assisted biosynthesis strategy enables functional bulk nanocomposites

January 28, 2019

In the movie Avengers: Infinity War, one of the coolest scenes occurs when Iron Man activates his nanotech armor and controls nanoparticles to form the armor upon his skin. Actually, developing such a technique to assemble nanomaterials into macroscopic bulk materials that maintain their unique nanoscale properties is still a challenging task for scientists in the real world. Meanwhile, it is also a core issue that hampers the practical industrial application of nanomaterials.

One possible solution is to provide a skeleton that can hold the individual nanomaterials together and thus construct functional bulk nanocomposites, just like the steel reinforcing bars in reinforced concrete. Among numerous candidates, bacterial cellulose (BC) nanofibrils, one of the most abundant biomaterials that can be produced in large quantities at low cost via bacterial fermentation, are favored by scientists not only for their high tensile strength that is comparable to steel and Kevlar, but also for the robust 3D nanofibrous network they form. However, the conventional process of BC nanocomposites fabrication requires the disintegration of such a 3D network structure, which seriously impairs the mechanical properties of the constructed nanocomposites. Up to this point, scientists can't help but wonder if there is an approach that can get the best of both worlds: incorporating nanoscale building blocks into a BC matrix while preserving the 3D network structure of BC.

In response to this challenge, recently, researchers led by Professor YU Shu-Hong from the University of Science and Technology of China (USTC) developed a general and scalable biosynthesis strategy, which involves simultaneous growth of cellulose nanofibrils through microbial fermentation and co-deposition of various kinds of nanoscale building blocks (NBBs) through aerosol feeding (intermittent spray of liquid nutrients and NBBs suspension) on solid culture substrates. Compared with static fermentation in liquid nutrients dispersed with NBBs, this method overcomes the diffusion limitation of nanoscale units from the bottom liquid medium to the upper surface layer of new-grown BC, successfully producing a series of uniform bulk nanocomposites composed of BC and nanoscale building blocks of different dimension, shapes, and sizes. Particularly, the method can be easily scaled up for potentially industrial applications by using large reactors and increasing the number of nozzles.

Thanks to the uniform distribution of NBBs in the biosynthesized nanocomposites, researchers were able to tune the content of carbon nanotubes (CNTs) in a wide range from 1.5 wt% to 75 wt% by changing the concentration of CNTs suspensions. Note that conventional fabrication method for CNTs nanocomposites that requires the mixing of CNTs dispersions with polymer solutions is only applicable to prepare polymer nanocomposites with low CNTs (< 10 wt%), as it is extremely difficult to homogeneously disperse high-concentration CNTs in polymeric hosts. To further demonstrate the advantages of the biosynthesis strategy for preparing mechanically reinforced nanocomposites, CNTs/BC nanocomposite films were also prepared for comparison by blending of CNTs and disintegrated BC suspensions. Both the tensile strength and Young's modulus of the biosynthesized CNTs/BC nanocomposites were remarkably higher than that blended samples. As a result, the biosynthesized CNTs/BC nanocomposites achieve simultaneously an extremely high mechanical strength and electrical conductivity, which is of crucial importance for practical application. nanocomposites. a, Scheme of the bioreactor. Aerosols of liquid nutrient and nanoscale building block suspensions were fed into the bioreactor with filtered compressed air, which was controlled by an automatic control system. b to d, Schematic illustration of the formation uniform BC-based nanocomposites with 0D nanoparticles, 1D nanotubes or nanowires, and 2D nanosheets. e, Photograph of a large-sized CNTs/BC pellicle with a volume of 800×800×8 mm3. f, Comparison of the tensile strength of the biosynthesized CNTs/BC nanocomposites with blended CNTs/BC nanocomposites. g, Electrical conductivity of the CNTs/BC films as a function of CNTs volume and weight fraction. Reprinted with permission of Oxford University Press.

"Despite the fact that we are currently focusing on CNT-based nanocomposite aerogels and films in this work, all the biosynthesized pellicles can be converted into corresponding functional bulk nanocomposites.", says GUAN Qing-Fang, the first author of this work. For example, the biosynthesized Fe3O4/BC nanocomposite films exhibited superparamagnetic behavior and high tensile strength, which are expected to be useful in various fields such as electromagnetic actuators, smart microfluidics devices, and biomedicine. "By upgrading the state-of-the-art production line that produces pure bacterial cellulose pellicles, industrial-scale production of these bulk nanocomposite materials for practical applications can be expected in the near future.", the researchers provide a positive outlook.
-end-
See the article:

A general biosynthesis strategy of functional bulk nanocomposites
Natl Sci Rev. 2019, doi: 10.1093/nsr/nwy144.
https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwy144/5203641

University of Science and Technology of China

Related Electrical Conductivity Articles:

Graphene substrate improves the conductivity of carbon nanotube network
Scientists at Aalto University, Finland, and the University of Vienna, Austria, have combined graphene and single-walled carbon nanotubes into a transparent hybrid material with conductivity higher than either component exhibits separately.
Scientists' design discovery doubles conductivity of indium oxide transparent coatings
esearchers at the University of Liverpool, University College London (UCL), NSG Group (Pilkington) and Diamond Light Source have made an important design discovery that could dramatically improve the performance of a key material used to coat touch screens and other devices.
Conductivity at the edges of graphene bilayers
For nanoribbons of bilayer graphene, whose edge atoms are arranged in zigzag patterns, the bands of electron energies which are allowed and forbidden are significantly different to those found in monolayer graphene.
Fat pumps generate electrical power
A previously unknown electrical current develops in the body's cells when the vital fat pump function of the flippases transfers ('flips') lipids from the outer to the inner layer of the body's cell membranes.
KIST-Stanford team develops new material for wearable devices able to restore conductivity
Development of nanocomposite material simultaneously possessing high stretchability, high conductivity, and self-healability.
More Electrical Conductivity News and Electrical Conductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...