Nav: Home

Plasmonic pioneers fire away in fight over light

January 28, 2019

HOUSTON - (Jan. 28, 2019) - When you light up a metal nanoparticle, you get light back. It's often a different color. That's a fact - but the why is up for debate.

In a new paper in the American Chemical Society journal Nano Letters, Rice chemist Stephan Link and graduate student Yi-Yu Cai make a case that photoluminescence, rather than Raman scattering, gives gold nanoparticles their remarkable light-emitting properties.

The researchers say understanding how and why nanoparticles emit light is important for improving solar-cell efficiency and designing particles that use light to trigger or sense biochemical reactions.

The longstanding debate, with determined scientists on either side, is about how light of one color causes some nanoparticles to emit light of a different color. Cai, the paper's lead author, said the debate arose out of semiconductor research in the 1970s and was more recently extended to the field of plasmonic structures.

"The Raman effect is like a ball that hits an object and bounces off," Cai said. "But in photoluminescence, the object absorbs the light. The energy in the particle moves around and the emission comes afterwards."

Eight years ago, Link's research group reported the first spectroscopy study on luminescence from single plasmonic nanorods, and the new paper builds upon that work, showing that the glow emerges when hot carriers - the electrons and holes in conductive metals - are excited by energy from a continuous wave laser and recombine as they relax, with the interactions emitting photons.

By shining specific frequencies of laser light onto gold nanorods, the researchers were able to sense temperatures they said could only come from excited electrons. That's an indication of photoluminescence, because the Raman view assumes that phonons, not excited electrons, are responsible for light emission.

Link and Cai say the evidence appears in the efficiency of anti-Stokes as compared to Stokes emission. Anti-Stokes emission appears when a particle's energetic output is greater than the input, while Stokes emission, the subject of an earlier paper by the lab, appears when the reverse is true. Once considered a background effect related to the phenomenon of surface-enhanced Raman scattering, Stokes and anti-Stokes measurements turn out to be full of useful information important to researchers, Cai said.

Silver, aluminum and other metallic nanoparticles are also plasmonic, and Cai expects they'll be tested to determine their Stokes and anti-Stokes properties as well. But first, he and his colleagues will investigate how photoluminescence decays over time.

"The direction of our group moving forward is to measure the lifetime of this emission, how long it can survive after the laser is turned off," he said.
-end-
Co-authors of the paper are Rice alumni Eric Sung, Runmin Zhang, Jun Liu, Yue Zhang and Wei-Shun Chang; research scientist Lawrence Tauzin; graduate student Behnaz Ostovar, and Peter Nordlander, a professor of physics and astronomy, of electrical and computer engineering and of materials science and nanoengineering. Link is a professor of chemistry and of electrical and computer engineering.

The research was supported by the Robert A. Welch Foundation, the Air Force Office of Scientific Research via the Department of Defense Multidisciplinary University Research Initiative and the National Science Foundation.

Editor's note: Links to high-resolution images for download appear at the end of this release.

David Ruth - 713-348-6327?david@rice.edu

Mike Williams - 713-348-6728?mikewilliams@rice.edu

Read the abstract at https://pubs.acs.org/doi/10.1021/acs.nanolett.8b04359

This news release can be found online at https://news.rice.edu/2019/01/28/plasmonic-pioneers-fire-away-in-fight-over-light/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Link Research Group: http://slink.rice.edu/members/slink/

Nordlander Nanophotonics Group: http://nordlander.rice.edu/home

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2019/01/0129_STOKES-1-WEB-19l9ih8.jpg

Rice University researchers argued for the dominance of photoluminescence as the source of light emitted by plasmonic metal nanoparticles in a new paper. Their techniques could be used to develop solar cells and biosensors. (Credit: Illustration by Anneli Joplin/Rice University)

https://news-network.rice.edu/news/files/2019/01/0129_STOKES-2-WEB-1l3zxcj.jpg

Rice University graduate student Yi-Yu Cai adjusts a microscope to focus on gold nanorods, the target of new research into the source of useful light emissions from metal nanoparticles. (Credit: Photo by Jeff Fitlow)

https://news-network.rice.edu/news/files/2019/01/0129_STOKES-3-WEB-1i67rrm.jpg

Rice University researchers are looking into the source of light emitted by plasmonic metal nanoparticles. In a new paper, they argue for the dominance of photoluminescence as opposed to Raman scattering. From left: Yi-Yu Cai, Behnaz Ostovar and Lawrence Tauzin. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
Better contrast agents based on nanoparticles
Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging.
Gentle cancer treatment using nanoparticles works
Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Nanoparticles can grow in cubic shape
Use of nanoparticles in many applications, e.g. for catalysis, relies on the surface area of the particles.
Nanoparticles deliver anticancer cluster bombs
Scientists have devised a triple-stage 'cluster bomb' system for delivering the chemotherapy drug cisplatin, via tiny nanoparticles designed to break up when they reach a tumor.

Related Nanoparticles Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".