Nav: Home

To catch a wave, rocket launches from top of world

January 28, 2019

On Jan. 4, 2019, at 4:37 a.m. EST the CAPER-2 mission launched from the Andøya Space Center in Andenes, Norway, on a 4-stage Black Brant XII sounding rocket. Reaching an apogee of 480 miles high before splashing down in the Arctic Sea, the rocket flew through active aurora borealis, or northern lights, to study the waves that accelerate electrons into our atmosphere.

CAPER-2, short for Cusp Alfvén and Plasma Electrodynamics Rocket-2, is a sounding rocket mission -- a type of spacecraft that carries scientific instruments on short, targeted trips to space before falling back to Earth. In addition to their relatively low price tags and quick development time, sounding rockets are ideally suited for launching into transient events -- like the sudden formation of the aurora borealis, or northern lights.

For CAPER-2 scientists, flying through an aurora provides a peek into a process as fundamental as it is complex: How do particles get accelerated throughout space? NASA studies this phenomenon in an effort to better understand not only the space environment surrounding Earth -- and thus protect our technology in space from radiation -- but also to help understand the very nature of stars and atmospheres throughout the solar system and beyond.

"Throughout the universe you have charged particles getting accelerated -- in the Sun's atmosphere, in the solar wind, in the atmospheres of other planets, and in astrophysical objects," said Jim LaBelle, space physicist at Dartmouth College in Hanover, New Hampshire, and principal investigator for the CAPER-2 mission. "An aurora presents us with a local laboratory where we can observe these acceleration processes close at hand."

Technically, the CAPER-2 team is interested in what happens just before an aurora starts glowing. Electrons, pouring into our atmosphere from space, collide with atmospheric gases and trigger the aurora's glow. Somehow, they pick up speed along the way.

"By the time they crash into our atmosphere, these electrons are traveling over 10 times faster than they were before," said Doug Rowland, space physicist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, who also studies particle acceleration. "We still don't understand the fundamental physics of how that happens."

The CAPER-2 team focused on a special kind of aurora that forms during the day. Unlike the nighttime aurora, the daytime aurora is triggered by electrons that stream in directly from the Sun -- and we know far less about them.

"There's been a huge amount of research done on the regular nighttime aurora, but the daytime aurora is much less studied," said Craig Kletzing, space physicist at the University of Iowa in Iowa City and coinvestigator for the mission. "There are good indications that there are some similarities and there are also some differences."

The team is focusing on how the electrons that create daytime auroras are jostled around by waves, in ways that may or may not differ from nighttime auroras. Two kinds of waves are of special interest, and have opposite effects. Alfvén waves, named after Swedish Nobel laureate Hannes Alfvén who first predicted their existence in 1942, are thought to accelerate the electrons. These huge waves -- measuring tens to hundreds of miles long from peak to peak -- propagate along Earth's magnetic field lines, whipping electrons to and fro.

On the other side are Langmuir waves, which are generated by the electrons themselves -- a process that steals some of the electrons' energy and slows them down. CAPER-2 will carry a high-resolution wave-particle correlator to measure them, the first sounding rocket mission to do so for the daytime aurora.

"This is very data-intensive," said LaBelle. "It's unique to sounding rockets to be able to look at this mechanism in this level of detail."

For the launch, the CAPER-2 team traveled to northern Norway, one of the few places that can put a rocket within range of the daytime aurora. Every day, northern Norway rotates under an opening in Earth's magnetic field known as the northern polar cusp, where particles from the Sun can funnel into our upper atmosphere.

Meeting the aurora right where they form is the best way to understand physical processes that are far too large to replicate in a lab.

"It's a kind of natural laboratory," LaBelle added. "We take our experiment to two different environments, where the variables are different, and then test the theory and answer the questions."
-end-
CAPER-2 was the third of nine sounding rocket missions taking part in the Grand Challenge Initiative - Cusp, an international campaign to explore the northern polar cusp. The VISIONS-2 and TRICE-2 missions launched in early December, and the fourth mission, G-CHASER, launched on Jan. 13. The window for AZURE, the next mission in the Grand Challenge Initiative - Cusp, opens on March 23, 2019.

NASA/Goddard Space Flight Center

Related Magnetic Field Articles:

Understanding stars: How tornado-shaped flow in a dynamo strengthens the magnetic field
A new simulation based on the von-Kármán-Sodium (VKS) dynamo experiment takes a closer look at how the liquid vortex created by the device generates a magnetic field.
'Quartz' crystals at the Earth's core power its magnetic field
Scientists at the Earth-Life Science Institute at the Tokyo Institute of Technology report in Nature (Fen.
Brightest neutron star yet has a multipolar magnetic field
Scientists have identified a neutron star that is consuming material so fast it emits more x-rays than any other.
Confirmation of Wendelstein 7-X magnetic field
Physicist Sam Lazerson of the US Department of Energy's Princeton Plasma Physics Laboratory has teamed with German scientists to confirm that the Wendelstein 7-X fusion energy device called a stellarator in Greifswald, Germany, produces high-quality magnetic fields that are consistent with their complex design.
High-precision magnetic field sensing
Scientists have developed a highly sensitive sensor to detect tiny changes in strong magnetic fields.
Brilliant burst in space reveals universe's magnetic field
Scientists have detected the brightest fast burst of radio waves in space to date -- locating the source of the event with more precision than previous efforts.
Optical magnetic field sensor can detect signals from the nervous system
The human body is controlled by electrical impulses in the brain, the heart and nervous system.
What did Earth's ancient magnetic field look like?
New work from Carnegie's Peter Driscoll suggests Earth's ancient magnetic field was significantly different than the present day field, originating from several poles rather than the familiar two.
Just what sustains Earth's magnetic field anyway?
Earth's magnetic field shields us from deadly cosmic radiation, and without it, life as we know it could not exist here.
Ironing out the mystery of Earth's magnetic field
The Earth's magnetic field has been existing for at least 3.4 billion years thanks to the low heat conduction capability of iron in the planet's core.

Related Magnetic Field Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".