More than a knee injury: ACL tears cause harmful changes in our brain structure

January 28, 2020

ANN ARBOR--It's known that some joint function is often permanently lost after anterior cruciate ligament reconstruction, and re-injury is common even with intensive physical therapy, but it's unclear why.

New research from the University of Michigan School of Kinesiology shows structural changes in the brains of patients who underwent ACL reconstruction. These changes hinder recovery and may contribute to performance deficits and re-injury, says study co-author Lindsey Lepley, U-M assistant professor of athletic training.

Lindsey Lepley and colleague Adam Lepley, clinical assistant professor of athletic training, took MRI brain scans of 10 ACL-reconstructed patients. The scans showed that part of the corticospinal tract--the pathway that scuttles messages from brain to muscles--had atrophied in the patients.

The corticospinal tract runs from front to back through both hemispheres of the brain. The side of the tract that controls the ACL-reconstructed knee was about 15% smaller than on the uninjured side, the researchers say.

Think of the altered corticospinal tract as a traffic tunnel that narrows, letting fewer cars pass through, they say. In the ACL reconstructed patients, less information gets from the brain to the muscle because less information can travel along the smaller tract.

"In essence, the brain not only alters the way it communicates with the rest of the body, joints, muscles, etc., but the structural makeup of the basic building blocks of the brain are also changed after ACL injury," Adam Lepley said. "We think that this is a protective mechanism, in which our body is trying to limit unwanted movement around a joint injury ... and can be applied to not just ACL injuries, but other musculoskeletal injuries as well."

Another recent study shows that downstream neural activity in the quadriceps is impaired during sport-like movements after ACL surgery, which suggests that poor brain structure and communication can lead to reduced functioning, the researchers say.

The bottom line for patients and clinicians is that a knee injury is not just about knees--other areas, like the brain structure, are negatively impacted, too.

"It means that during treatment, a systemic approach should be taken not just to improve range of motion or swelling at the injured joint, but also consider other impairments like poor movement patterns and muscle activation in order to get better outcomes," Lindsey Lepley said. "There is evidence of using visual retraining, different motor learning modalities like external focus of attention and biofeedback, which can help 'rewire' the brain to help the body adapt to a new normal."
-end-
Study: https://www.ncbi.nlm.nih.gov/pubmed/31901791

Related research: https://www.ncbi.nlm.nih.gov/pubmed/31897547

Lindsey Lepley: https://www.kines.umich.edu/directory/lindsey-lepley

Adam Lepley: https://www.kines.umich.edu/directory/adam-lepley

University of Michigan

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.