# New mathematical model for amyloid formation

January 28, 2020WASHINGTON, January 28, 2020 -- Amyloids are aggregates consisting of stacks of thousands of proteins bound tightly together. Their formation is involved in several widespread disorders, including Alzheimer's disease and Type II diabetes.

In this week's

*Journal of Chemical Physics*, by AIP Publishing, scientists report on a mathematical model for the formation of amyloid fibrils. The model sheds light on how the aggregation process can occur in a catalytic manner, something that has not been previously well understood.

The investigators applied their model to the aggregation of a specific protein associated with Alzheimer's, Ab40. The results show the initiation of the aggregation process for Ab40?fibrils typically occurs at interfaces, such as near the surface of a liquid solution or the glass wall of a test tube. This has important implications for the interpretation of laboratory data used in the study of Alzheimer's and other diseases.

The model consists of a set of mathematical equations, known as rate equations, that describe how protein aggregate concentrations change over time. Each reaction step in the model is shown to be analogous to those in reactions involving enzymes. The role of the enzyme is played by either the tip or side of a growing fiber or, possibly, a surface of the reaction vessel.

The investigators found the mathematical form of their model was related to the famous Michaelis-Menten equations, first published in 1913 to describe the rates of enzyme reactions. It has a far simpler mathematical form than all previous models used for amyloid formation and has the additional advantage that the equations can be solved by hand, without the need for computer simulations.

"We expect the methodology developed in this paper will underpin future efforts to model new amyloid formation phenomena," co-author Alexander Dear said.

One of the key features of the mathematical solution found for Michaelis-Menten-type equations is a phenomenon known as saturation. When saturation occurs, the catalytic sites become fully occupied at high protein concentrations. In the case of the Ab40 studies, saturation also shows that the process initiating aggregation involves a surface, such as the wall of a test tube.

While the conclusions do not directly apply to the body itself, co-author Tuomas Knowles said, "This work will be central in facilitating the study of amyloid formation in the presence of other species found in body fluids."

Co-author Sara Linse said, "This work takes the analysis of experimental data to a new level that will be essential for deriving potent inhibitors of amyloid formation."

-end-

The article, "The catalytic nature of protein aggregation," is authored by Alexander Dear, Georg Meisl, Thomas C. T. Michaels, Manuela R. Zimmermann, Sara Linse and Tuomas P. J. Knowles. The article will appear in The *Journal of Chemical Physics*on Jan. 28, 2020 (DOI: 10.1063/1.5133635). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5133635.

American Institute of Physics

**Related Mathematical Model Articles:**

Predicting heat death in species more reliable with new mathematical model

An international research with the involvement of the Universitat Autònoma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

An international research with the involvement of the Universitat Autònoma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks

Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy

In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics

As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes

MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution

Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes

Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation

Scientists report on a mathematical model for the formation of amyloid fibrils.

Scientists report on a mathematical model for the formation of amyloid fibrils.

New mathematical model shows how diversity speeds consensus

Scientific literature abounds with examples of ways in which member diversity can benefit a group -- whether spider colonies' ability to forage or an industrial company's financial performance.

Scientific literature abounds with examples of ways in which member diversity can benefit a group -- whether spider colonies' ability to forage or an industrial company's financial performance.

Newly developed mathematical model could be used to predict cancer drug side effects

A research team at Kobe University Hospital have further illuminated the likelihood of cancer drug side effects that can occur due to genetic mutations in the drug-metabolizing enzyme.

A research team at Kobe University Hospital have further illuminated the likelihood of cancer drug side effects that can occur due to genetic mutations in the drug-metabolizing enzyme.

## Trending Science News

**Current Coronavirus (COVID-19) News**

## Top Science Podcasts

We have hand picked the**top science podcasts of 2020**.

**Now Playing: TED Radio Hour**

**Debbie Millman: Designing Our Lives**

From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remadeand helps us design our own paths.

**Now Playing: Science for the People**

**#574 State of the Heart**

This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.

**Now Playing: Radiolab**

**Insomnia Line**

Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do? Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through. This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.