Artificial intelligence predicts treatment outcome for diabetes-related vision loss

January 28, 2020

WASHINGTON -- A new approach that uses artificial intelligence to analyze retinal images could one day help doctors select the best treatment for patients with vision loss from diabetic macular edema. This diabetes complication is a major cause of vision loss among working-age adults.

Anti-vascular endothelial growth factor (VEGF) agents are widely used as the first line of therapy for diabetic macular edema, but they don't work for everyone. There's a need to identify who would benefit from the therapy because it requires multiple injections that are costly and burdensome for both patients and physicians.

"We developed an algorithm that can be used to automatically analyze optical coherence tomography (OCT) images of the retina to predict whether a patient is likely to respond to anti-VEGF treatments," said research team leader Sina Farsiu from Duke University. "This research represents a step toward precision medicine, in which such predictions help clinicians better select first-line therapies for patients based on specific disease conditions."

In The Optical Society (OSA) journal Biomedical Optics Express, Farsiu and colleagues show that the new algorithm can analyze just one pre-treatment volumetric scan to accurately predict whether a patient is likely to respond to anti-VEGF therapy.

"Our approach could potentially be used in eye clinics to prevent unnecessary and costly trial-and-error treatments and thus alleviate a substantial treatment burden for patients," Farsiu said. "The algorithm could also be adapted to predict therapy response for many other eye diseases, including neovascular age-related macular degeneration."

Predicting treatment response The algorithm developed by the researchers is based on a novel convolutional neural network (CNN) architecture, a type of artificial intelligence that can analyze images by assigning importance to various aspects or objects. They used the algorithm to examine images acquired with OCT, a noninvasive technology that produces high-resolution cross-sectional retinal images and is the standard of care for assessing and treating many eye conditions.

"Unlike previously developed approaches, our algorithm requires OCT images from only a single pretreatment timepoint," said Reza Rasti, first author of the paper and a postdoctoral scholar in Farsiu's laboratory. "There's no need for time-series OCT images, patient records or other metadata to predict therapy response."

The new algorithm preserves and highlights global structures in the OCT image while enhancing local features from diseased regions to efficiently use retinal thickness information. To help with treatment decision making, the researchers incorporated an additional step that looks for CNN-encoded features that are highly correlated with anti-VEGF response.

Testing the algorithm The researchers tested their new algorithm with OCT images from 127 patients who had been treated for diabetic macular edema with three consecutive injections of anti-VEGF agents. They applied the algorithm to analyze OCT images taken before the anti-VEGF injections, then compared the algorithm's predictions to OCT images taken after anti-VEGF therapy to confirm whether the therapy improved the condition.

Based on the results, the researchers calculated that the algorithm would have an 87 percent chance of correctly predicting who would respond to treatment. It exhibited an average precision and specificity of 85 percent and a sensitivity of 80 percent.

Next, the researchers plan to confirm and extend the findings from this pilot study by performing a larger observational trial of patients who have not yet undergone treatment.
-end-
Paper: R. Rasti, M. J. Allingham, P. S. Mettu, S. Kavusi, K. Govind, S. W. Cousins, S. Farsiu, "Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema," Biomed. Opt. Express, volume 11, issue 2, pp. 1139-1152 (2020).

DOI: https://doi.org/10.1364/BOE.379150

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and optical imaging in biomedicine. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published monthly by The Optical Society and edited by Christoph Hitzenberger, Medical University of Vienna, Austria. Biomedical Optics Express is online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contact:

mediarelations@osa.org

The Optical Society

Related Algorithm Articles from Brightsurf:

CCNY & partners in quantum algorithm breakthrough
Researchers led by City College of New York physicist Pouyan Ghaemi report the development of a quantum algorithm with the potential to study a class of many-electron quantums system using quantum computers.

Machine learning algorithm could provide Soldiers feedback
A new machine learning algorithm, developed with Army funding, can isolate patterns in brain signals that relate to a specific behavior and then decode it, potentially providing Soldiers with behavioral-based feedback.

New algorithm predicts likelihood of acute kidney injury
In a recent study, a new algorithm outperformed the standard method for predicting which hospitalized patients will develop acute kidney injury.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.

New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.

Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.

New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.

A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.

New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.

Read More: Algorithm News and Algorithm Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.