New treatment helps patients with a spinal cord injury

January 28, 2021

An international team of scientists headed by Grégoire Courtine at EPFL and CHUV and Aaron Phillips at the University of Calgary has developed a treatment that can dramatically improve the lives of patients with a spinal cord injury.

VIDEO: https://www.youtube.com/watch?v=UGXnuHgDWFU

"A serious and underrecognized result of these injuries is unstable blood pressure, which can have devastating consequences that reduce quality of life and are life threatening. Unfortunately, there are no effective therapies for unstable blood pressure after spinal cord injury". said Dr. Aaron Phillips, co-lead author of the study (see affiliations below). "We created the first platform to understand the mechanisms underlying blood pressure instability after spinal cord injury."

Their findings, published today in Nature, builds on research that has already enabled several paraplegics to walk again through epidural electrical stimulation (EES). But instead of targeting the region of the spinal cord that produces leg movements, they delivered EES in the region containing the neural circuits that regulate blood pressure. In addition, they adapted the stimulation protocol in real-time based on measurements taken by a blood-pressure monitor implanted in an artery. The monitor measures blood pressure continuously, and adapts the instructions sent to a pacemaker that in turn delivers electrical pulses over the spinal cord. The stimulation is biomimetic, since it recapitulates the natural activation of the body's hemodynamic system. "The stimulation compensates for the broken communication line between the patient's central nervous system and sympathetic nervous system," says Courtine.

The research team initially tested their method in preclinical rodent and nonhuman primate models in order to understand the mechanisms that disrupt blood pressure modulation after spinal cord injury, and to identify where and how the stimulation patterns should be applied to obtain the desired hemodynamic responses. Jocelyne Bloch, the neurosurgeon who heads the .NeuroRestore research center with Courtine and who carried out the surgical implants, was surprised at how quickly the stimulation protocol worked. "It was impressive to see the blood pressure rise to the target level immediately after the stimulation was applied," she says.

After these initial tests, the scientists tried their method on a human patient.

"I suffered from daily episodes of low blood pressure, especially in the morning and evening," says Richi, 38 years old. "But since I've had the implant, it happens much less often - maybe once every couple of weeks." Himself a surgeon, Richi lost the use of all four limbs after a sport accident. "Those daily episodes of hypotension were a real burden. They also disturbed my vision and prevented me from performing even simple everyday tasks. The electrical stimulation treatment provided a huge relief - much more effective than medication."

One of the physicians working with Richi, Dr. Sean Dukelow, states: "Since using this system, Richi was able to completely stop all drugs he was using to manage blood pressure instability. This has been transformative, and over the long-term may reduce Richi's risk of cardiovascular disease."

The team intends to continue its research thanks to a large grant received from the US Defense Advanced Research Projects Agency (DARPA). At the same time, Onward (formerly GTX Medical) - a startup based at EPFL Innovation Park and in the Netherlands - will develop and market clinical devices based on the team's discoveries.
-end-


Ecole Polytechnique Fédérale de Lausanne

Related Spinal Cord Injury Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Spinal cord injury increases risk for mental health disorders
A new study finds adults with traumatic spinal cord injury are at an increased risk of developing mental health disorders and secondary chronic diseases compared to adults without the condition.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

IU scientists study link between energy levels, spinal cord injury
A team of researchers from Indiana University School of Medicine, in collaboration with the National Institute of Neurological Disorders and Stroke, have investigated how boosting energy levels within damaged nerve fibers or axons may represent a novel therapeutic direction for axonal regeneration and functional recovery.

UBCO professor simplifies exercise advice for spinal cord injury
Professor Kathleen Martin Ginis says a major barrier to physical activity for people with a spinal cord injury is a lack of knowledge or resources about the amount and type of activity needed to achieve health and fitness benefits.

Robotic trunk support assists those with spinal cord injury
A Columbia Engineering team has invented a robotic device -- the Trunk-Support Trainer (TruST) -- that can be used to assist and train people with spinal cord injuries (SCIs) to sit more stably by improving their trunk control, and thus gain an expanded active sitting workspace without falling over or using their hands to balance.

Does frailty affect outcomes after traumatic spinal cord injury?
A new study has shown that frailty is an important predictor of worse outcome after traumatic spinal cord injury in patients less than 75 years of age.

Sleep and sleepiness 'a huge problem' for people with spinal cord injury
A new study led by a University of Calgary researcher at the Cumming School of Medicine (CSM) finds that fatigue and sleep may need more attention in order to prevent issues like stroke after spinal cord injury.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Read More: Spinal Cord Injury News and Spinal Cord Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.