Efficient fluorescent materials and OLEDs for the NIR

January 28, 2021

The ability to manipulate near-infrared (NIR) radiation has the potential to enable a plethora of technologies not only for the biomedical sector (where the semitransparency of human tissue is a clear advantage) but also for security (e.g. biometrics) and ICT (information and communication technology), with the most obvious application being to (nearly or in)visible light communications (VLCs) and related ramifications, including the imminent Internet of Things (IoT) revolution. Compared with inorganic semiconductors, organic NIR sources offer cheap fabrication over large areas, mechanical flexibility, conformability, and, potentially, bio-compatibility. However, the emission efficiency of organic emitters in the NIR is hindered by the detrimental effects of certain types of aggregation/packing of the emitters in the solid state and by the generally observed increase of non-radiative rates upon reduction of the energy gap (EG), i.e. the so-called "energy-gap law" (EG-law) for radiationless transitions. Hybrid organic/inorganic innovative materials such as perovskite methylammonium lead halide and quantum dots may offer a high external quantum efficiency (EQE) alternative, but their heavy-metal content will prevent their use in most applications, especially biocompatible or wearable ones. Toxicity issues can also affect phosphorescent materials incorporating toxic heavy elements.

In a new paper published in Light: Science & Applications, an international team of scientists, led by Professor Franco Cacialli at University College London and Professor Harry Anderson at the University of Oxford report novel non-toxic and heavy-metal-free organic NIR emitters and OLEDs characterised by emission peaking at ~ 850 nm and a maximum 3.8% external quantum efficiency (EQE).

The authors use optical spectroscopy to elucidate how it is possible to leverage the increasing spatial extent of excited states with oligomer length to favourably manipulate the competition between radiative and nonradiative processes (quantified by the radiative and nonradiative rates, kr and knr respectively), while simultaneously suppressing aggregation. Surprisingly, instead of a decreasing photoluminescence quantum yield (PLQY) with oligomer length (and thus with reducing gap), a steady increase and eventual saturation of the PLQY is observed at around the hexamer (l-P6(THS)). While surprising, this behaviour can be understood by considering that in these systems conjugated triple-bond-based bridges between the porphyrins allow effective intra-molecular electronic coupling among the macrocycles, and so enable the radiative (singlet) excited state (exciton) to delocalize over increasing portions of the molecule. This forces an increasing mismatch of the spatial extent of the radiative (singlet) and of the non-radiative (triplet) excitons, in view of the intrinsically localized nature of the triplets. Such a mismatch is expected to suppress intersystem crossing (ISC) between singlets and triplets and therefore the non-radiative rate (knr). In addition, exciton delocalization is also expected to favour decoupling from vibrational ladders (and thus circumvent the EG-law). Remarkably, the growth of the nonradiative rate as a function of the decrease of the energy gap (forced by the increased oligomer length) is characterized in these systems by a logarithmic rate an order of magnitude smaller than in previous studies. Second, bulky trihexylsilyl side chains are attached to the porphyrins to prevent aggregation quenching, through steric hindrance, which limits π-π interactions (see chemical structure in Figure 1).

The basic photophysics and material design breakthrough has been confirmed by incorporating an F8BT:l-P6(THS) blend in OLEDs, with which an average EQE of 1.1% and a maximum EQE of 3.8% at a peak wavelength of 850 nm were demonstrated (Figure 2). A novel quantitative model was also developed to analyse the results, which implies the importance of triplets to singlets conversion processes (e.g. reverse inter-system crossing, and/or thermally activated delayed fluorescence) to account for the EQE values beyond the apparent limit imposed by spin-statistics.

The EQEs presented in the paper are, to the best of the authors knowledge, the highest reported so far in this spectral range from a "heavy-metal-free" fluorescent emitter.

The authors summarise the significance of their work by saying:

"Not only do our results demonstrate milder increases of knr with (reducing) EG than in the literature, but, most importantly, they also provide a general strategy for designing high-luminance NIR emitters."

"In the short term, they may enable further development of OLEDs in this challenging spectral range for a wide range of potential applications spanning from the life-sciences (biochemical wearable sensors, in vivo sub-surface bio-imaging, to name just two), security (e.g. biometrics), horticulture, and (in)visible light communications (iVLC), a serious contestant to alleviate the bandwidth demands of the imminent Internet-of-thing (IoT) revolution."

"More importantly, and in perspective, these findings are significant to a range of disciplines."

Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.