Thick lithosphere casts doubt on plate tectonics in Venus's geologically recent past

January 28, 2021

PROVIDENCE, R.I. [Brown University] -- At some point between 300 million and 1 billion years ago, a large cosmic object smashed into the planet Venus, leaving a crater more than 170 miles in diameter. A team of Brown University researchers has used that ancient impact scar to explore the possibility that Venus once had Earth-like plate tectonics.

For a study published in Nature Astronomy, the researchers used computer models to recreate the impact that carved out Mead crater, Venus's largest impact basin. Mead is surrounded by two clifflike faults -- rocky ripples frozen in time after the basin-forming impact. The models showed that for those rings to be where they are in relation to the central crater, Venus's lithosphere -- its rocky outer shell -- must have been quite thick, far thicker than that of Earth. That finding suggests that a tectonic regime like Earth's, where continental plates drift like rafts atop a slowly churning mantle, was likely not happening on Venus at the time of the Mead impact.

"This tells us that Venus likely had what we'd call a stagnant lid at the time of the impact," said Evan Bjonnes, a graduate student at Brown and study's lead author. "Unlike Earth, which has an active lid with moving plates, Venus appears to have been a one-plate planet for at least as far back as this impact."

Bjonnes says the findings offer a counterpoint to recent research suggesting that plate tectonics may have been a possibility in Venus's relatively recent past. On Earth, evidence of plate tectonics can be found all over the globe. There are huge rifts called subduction zones where swaths of crustal rock are driven down into the subsurface. Meanwhile, new crust is formed at mid-ocean ridges, sinuous mountain ranges where lava from deep inside the Earth flows to the surface and hardens into rock. Data from orbital spacecraft have revealed rifts and ridges on Venus that look a bit like tectonic features. But Venus is shrouded by its thick atmosphere, making it hard to make definitive interpretations of fine surface features.

This new study is a different way of approaching the question, using the Mead impact to probe characteristics of the lithosphere. Mead is a multi-ring basin similar to the huge Orientale basin on the Moon. Brandon Johnson, a former Brown professor who is now at Purdue University, published a detailed study of Orientale's rings in 2016. That work showed that the final position of the rings is strongly tied to the crust's thermal gradient -- the rate at which rock temperature increases with depth. The thermal gradient influences the way in which the rocks deform and break apart following an impact, which in turn helps to determine where the basin rings end up.

Bjonnes adapted the technique used by Johnson, who is also a coauthor on this new research, to study Mead. The work showed that for Mead's rings to be where they are, Venus's crust must have had a relatively low thermal gradient. That low gradient -- meaning a comparatively gradual increase in temperature with depth -- suggests a fairly thick Venusian lithosphere.

"You can think of it like a lake freezing in winter," Bjonnes said. "The water at the surface reaches the freezing point first, while the water at depth is a little warmer. When that deeper water cools down to similar temperatures as the surface, you get a thicker ice sheet."

The calculations suggest that the gradient is far lower, and the lithosphere much thicker, than what you'd expect for an active-lid planet. That would mean that Venus has been without plate tectonics for as far back as a billion years ago, the earliest point at which scientists think the Mead impact occurred.

Alexander Evans, an assistant professor at Brown and study co-author, said that one compelling aspect of the findings from Mead is their consistency with other features on Venus. Several other ringed craters that the researchers looked at were proportionally similar to Mead, and the thermal gradient estimates are consistent with the thermal profile needed to support Maxwell Montes, Venus's tallest mountain.

"I think the finding further highlights the unique place that Earth, and its system of global plate tectonics, has among our planetary neighbors," Evans said.

Brown University

Related Plate Tectonics Articles from Brightsurf:

Lost and found: UH geologists 'resurrect' missing tectonic plate
A team of geologists at the University of Houston College of Natural Sciences and Mathematics believes they have found the lost plate known as Resurrection in northern Canada by using existing mantle tomography images.

Plate tectonics goes global
A research team led by Dr. WAN Bo from the Institute of Geology and Geophysics (IGG) of the Chinese Academy of Sciences has revealed that plate tectonics went global 2 billion years ago.

Remixed mantle suggests early start of plate tectonics
New Curtin University research on the remixing of Earth's stratified deep interior suggests that global plate tectonic processes, which played a pivotal role in the existence of life on Earth, started to operate at least 3.2 billion years ago.

Why the Victoria Plate in Africa rotates
The East African Rift System is a newly forming plate tectonic boundary at which the African continent is being separated into several plates.

Evidence for plate tectonics on earth prior to 3.2 billion years ago
New research indicates that plate tectonics may have been well underway on Earth more than 3.2 billion years ago, adding a new dimension to an ongoing debate about exactly when plate tectonics began influencing the early evolution of the planet.

Upper-plate earthquakes caused uplift along New Zealand's Northern Hikurangi Margin
Earthquakes along a complex series of faults in the upper plate of New Zealand's northern Hikurangi Subduction Margin were responsible for coastal uplift in the region, according to a new evaluation of local marine terraces.

Breathing? Thank volcanoes, tectonics and bacteria
A Rice University study in Nature Geoscience suggests Earth's first burst of oxygen was added by a spate of volcanic eruptions brought about by tectonics.

What drives plate tectonics?
Scientists found ''switches'' between continental rupture, continental collision, and oceanic subduction initiation in the Tethyan evolution after a reappraisal of geological records from the surface and new global-scale geophysical images at depth.

Plate tectonics may have driven 'Cambrian Explosion, study shows
The quest to discover what drove one of the most important evolutionary events in the history of life on Earth has taken a new, fascinating twist.

Zipingpu Reservoir reveals climate-tectonics interplay around 2008 Wenchuan earthquake
A new study led by Prof. JIN Zhangdong from the Institute of Earth Environment (IEE) of the Chinese Academy of Sciences provided a new insight on the interplay between climate and tectonics from a sediment record in the Zipingpu Reservoir around the 2008 Wenchuan earthquake.

Read More: Plate Tectonics News and Plate Tectonics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to