Additive Increases Life, Lowers Costs Of Concrete Bridge Decks

January 28, 1999

University Park, Pa. -- Penn State researchers have found that a commercially available additive can potentially double the life and lower the long term costs of concrete bridge decks by enhancing resistance to water, corrosion and deicing salt.

John J. Garvey, a master's degree candidate in civil and environmental engineering; Dr. Paul J. Tikalsky, associate professor of civil and environmental engineering; Dr. Barry Scheetz, professor of materials and senior scientist at Penn State's Materials Research Laboratory; and Bruce Grant, president of IPA Systems, Philadelphia, are the authors of a paper detailing the study.

The paper, "Influence of Alkaline Earth Silicate Admixture on Durability of Pennsylvania Turnpike Bridges," was presented Jan. 11 at the annual meeting of the Transportation Research Board (TRB) in Washington, D. C. The TRB is also distributing the paper nationally to all state highway departments.

The additive is a proprietary mixture of alkali earth silicates, calcium and nitrates tradenamed, Ipanex. The additive has been manufactured by IPA Systems, Phila., since 1972. IPA and The Pennsylvania Turnpike Commission funded the study which was conducted in cooperation with Penn State's Pennsylvania Transportation Institute.

"There is the potential to double the life span of most highway bridge decks with an increase in cost of less than five percent," Tikalsky says. "The interstate highway bridge decks on the turnpike see some of the heaviest traffic and salt applications in the country. This leads to a life of approximately 25 years but with this admixture the data shows that these decks are virtually new after 25 years. The repair, maintenance and replacement costs are essentially avoided by building a better initial deck. Our ongoing research is working on quantifying the value and additional life cycle benefits of the admixture."

The researchers inspected concrete deck structures that had been in service on six bridges in similar locations on the Pennsylvania Turnpike for 25 years or more. Bridge decks constructed with concrete to which Ipanex had been added were compared with those constructed without the additive. The researchers report that there was less tendency for water or salts to intrude into the concrete decks constructed using Ipanex. In decks constructed without Ipanex, the concrete between the surface and the embedded steel was observed to be peeling off, exposing the steel to the air.

In addition to evaluating the performance of the bridges along the turnpike, the Penn State research team also performed laboratory testing and chemical analysis of core samples taken from the bridge decks. The samples were subjected to water under pressure (300 psi) for seven days. No appreciable water penetrated the samples containing the additive while water penetrated the other samples.

Study of the cores with an scanning electron microscope showed that after 25 years, the additive had reacted with the cement to produce much finer structure in the concrete. A refined structure, with fewer and smaller spaces between the cement grains, makes concrete less penetrable by water and chloride ions from deicing salt.

"Chlorides from deicing salts and the saturation of concrete with water are the primary causes of premature corrosion of reinforcement in concrete bridge decks," Tikalsky notes. "The additive reduces the ability of water and chlorides to penetrate the concrete, delaying the onset of corrosion, and increasing the design life of bridges."

In their paper, the researchers conclude that the additive "greatly extended the life of the precast bridge panels." They added, "This has a positive impact on the life cycle cost of the bridges made with this material."
-end-
EDITORS: Dr. Tikalsky can be reached at 814-863-5844 or at tikalsky@psu.edu by email.



Penn State

Related Corrosion Articles from Brightsurf:

Story Tips: Remote population counting, slowing corrosion and turning down the heat
ORNL Story tips: Remote population counting, slowing corrosion and turning down the heat

Cement-free concrete beats corrosion and gives fatbergs the flush
Researchers from RMIT University have developed an eco-friendly zero-cement concrete, which all but eliminates corrosion.

Sunflower oil shows unexpected efficiency in corrosion prevention
Sunflower oil, which is found in almost every home, can be used not only in cooking, everyday life and cosmetology - it will help avoid complications (gas hydrates and corrosion) during oil and gas production.

Waterborne polyurea/urethanes significantly reduce hydrate growth rate in pipelines
A series of inhibitors has appeared with new reagents based on water-soluble polyurethanes.

Sulfonated chitosan studied as potential biodegradable corrosion inhibitor
Hydrate formation has long been a problem for hydrocarbon production in the Arctic.

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate
Graphene has attracted the interest of researchers in recent years because, despite its apparent anti-corrosive properties, its proximity was seen to increase the corrosion of copper.

Current model for storing nuclear waste is incomplete
The materials the United States and other countries plan to use to store high level nuclear waste will likely degrade faster than anyone previously knew, because of the way those materials interact, new research shows.

Marine biology: Acidified oceans may corrode shark scales
Prolonged exposure to high carbon dioxide (acidified) seawater may corrode tooth-like scales (denticles) covering the skin of puffadder shysharks, a study in Scientific Reports suggests.

Finding out the factors that most influence the steel corrosion in reinforced concrete
This process causes structures to deteriorate internally and can even cause buildings to collapse.

Researchers strengthen weakest link in manufacturing strong materials
Industrial and automotive machinery, such as automotive engine parts, contain materials that are, heat-, wear-, and corrosion-resistant.

Read More: Corrosion News and Corrosion Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.