Hospital scanner could curb nuclear waste threat

January 29, 2010

Medical equipment used for diagnosis of patients with heart disease and cancer could be a key weapon in stopping nuclear waste seeping into the environment, according to new research.

A team of scientists from the Universities of Manchester and Leeds have joined forces with experts in nuclear medicine at Manchester Royal Infirmary, using medical gamma-ray cameras to track radioactive isotopes in soil samples from a US civil nuclear site.

This is the first time the technique, which is used in hospitals for heart, bone and kidney scanning, has been used to study the environmental behaviour of nuclear waste - and its success could help scientists find new ways of using bacteria to control the spread of radioactivity.

Radioactive isotopes of the element technetium (Tc) are produced in bulk by nuclear facilities, while a specific isotope of Tc with a very short life is routinely used as a medical tracer in human bodies.

Nuclear fission of Uranium has released tonnes of Tc from nuclear facilities over the past decades, with the element remaining radioactive for thousands of years.

But although the short lived medical isotope is chemically indistinguishable from that in long lived waste, it can be used safely in tests.

In the study researchers from The University of Manchester, led by Prof Jon Lloyd, took soil samples from the Oak Ridge nuclear facility in the United States and successfully tracked the movement of medical Tc through the soil.

Scientists at The University of Leeds were then asked to verify the observations using a special microscope technique called Transmission electron microscopy (TEM).

With the help of DNA analysis the Manchester team confirmed that certain microbes - and particularly some that use ferric iron for energy - can fix Tc in place in soils.

Researchers found that nearly all the Tc remained fixed when ferric iron was present with these 'iron-reducing' bacteria.

This finding itself is not new - Professor Lloyd and his colleagues had previously reported that microbes in laboratory cultures could perform this role in fixing Tc.

But the researchers' success in using the gamma camera could see the technique being used to probe how Tc and ferric iron move together in far more complex soil systems more representative of the 'real world' - helping develop future remediation techniques.

Prof Jon Lloyd from the School of Earth, Atmospheric and Environmental Science (SEAES) at The University of Manchester, said: "Using this medical scanning technique we were able to explore, in real time, the mobility of one of the most problematic and mobile radionuclides in sediments.

"Our success will allow scientists to accurately monitor the success of new biological methods in trapping radioactive elements in sediments and stopping them spreading further into the natural environment."

The findings coincide with the opening of a new Research Centre for Geological Disposal at The University, supported by a £1.4m endowment from BNFL, while a new Nuclear Medicine Centre recently opened at the Manchester Royal Infirmary, as part of the £500m Central Manchester Hospitals development.

Prof Lloyd added: "Investment in these two diverse but important areas of scientific research has helped bring about interesting and unexpected research findings that could ultimately have great benefit for society."
-end-
Notes to editors

Prof Lloyd is available for comment by arrangement. For more information please contact Alex Waddington, Media Relations Officer, UoM, Tel 0161 275 8387 / 07717 881569.

The research was published in a special edition of the American Chemical Society journal Environmental Science and Technology. A copy of the paper, 'Probing the Biogeochemical Behaviour of Technetium Using a Novel Nuclear Imaging Approach' is available on request.

University of Manchester

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.