Nav: Home

Genetic basis of color diversity in coral reefs discovered

January 29, 2015

Scientists from the University of Southampton have discovered the genetic basis which allows corals to produce their stunning range of colours.

They have found that instead of using a single gene to control pigment production, corals use multiple copies of the same gene. Depending on how many genes are active, the corals will become more or less colourful.

Dr Jörg Wiedenmann, Professor of Biological Oceanography and Head of the University's Coral Reef Laboratory, says: "It was one of the longstanding mysteries of coral reef biology - why sometimes individuals of the same coral species can show such dramatic differences in their colour, despite sitting side-by-side on the reef and being exposed to the same environmental conditions. The key finding is that these so-called 'colour morphs' do not use just one single gene to control the pigment production, but multiple identical copies thereof."

The research, which is published in Molecular Ecology, also explained how this strategy could help corals to survive in stressful environments.

Using the staghorn coral Acropora millepora as a model, the team found that the fluorescent pigments that are mostly responsible for coral colours act as sunscreens for the symbiotic algae that live in the coral tissue. These alga require light to produce sugars, which they can contribute to the nutrition of the corals in return for the shelter and the supply of nutrients that are provided by the coral host.

However, the light intensities on coral reefs can, on occasions, exceed the levels that are healthy for the alga and the light becomes dangerous for the symbiotic partnership. This light stress can ultimately contribute to the loss of the symbiotic algae, a process known as coral bleaching. If the partnership cannot be re-established, the corals often die.

Dr Wiedenmann explains: "Corals are firmly attached to the substrate, so they can't just move in the shade when they receive too much sunlight. Instead, they need to boost their capacity to cope with too much sun during these times. We show that increased light levels switch the genes on that are responsible for the production of the colourful sunscreening pigments. This is why corals are usually more colourful in the most light exposed colony parts."

However, the enhanced protection comes at a cost and the corals need to allocate substantial energy reserves to accumulate the high amounts of protein pigments that are characteristically found in brightly coloured corals. This energy might be divided away from other important processes, potentially resulting in reduced growth rates or lower numbers of offspring. Therefore, being brightly colour might not be a good investment for corals settling in less light exposed parts of the reefs.

Dr Wiedenmann says: "The genetic framework provided by gene copy number variation ensures that some individuals within a coral population can protect themselves very well, these are likely to survive better in stressful environments. Others are less protected, but can invest their energy in processes that could help them to succeed in habitats with less light stress. The resulting colour polymorphism increases the potential of the coral species to extend their distribution range along the steep light gradients of coral reefs and to inhabit more ecological niches.

"Our finding suggests that the repertoire of reef corals' stress responses is larger than previously thought."
-end-
For the study, researchers from the University of Southampton worked together with colleagues from the University of New South Wales in Australia and the University of Ulm in Germany.

University of Southampton

Related Coral Reefs Articles:

Can coral reefs 'have it all'?
A new study outlines how strategic placement of no-fishing marine reserves can help coral reef fish communities thrive.
Coral reefs 'weathering' the pressure of globalization
More information about the effects human activities have on Southeast Asian coral reefs has been revealed, with researchers looking at how large-scale global pressures, combined with the El Niño Southern Oscillation (ENSO) climate pattern, can detrimentally impact these delicate marine ecosystems.
Coral reefs: Centuries of human impact
In her AAAS talk, ASU researcher Katie Cramer outlines the evidence of the long-ago human footprints that set the stage for the recent coral reef die-offs we are witnessing today.
Large 'herbivores of the sea' help keep coral reefs healthy
Selective fishing can disrupt the delicate balance maintained between corals and algae in embattled Caribbean coral reefs.
How microbes reflect the health of coral reefs
Microorganisms play important roles in the health and protection of coral reefs, yet exploring these connections can be difficult due to the lack of unspoiled reef systems throughout the global ocean.
3-D printed coral could help endangered reefs
Threats to coral reefs are everywhere--rising water temperatures, ocean acidification, coral bleaching, fishing and other human activities.
Actions to save coral reefs could benefit all ecosystems
Scientists say bolder actions to protect the world's coral reefs will benefit all ecosystems, human livelihoods and improve food security.
Coral reefs shifting away from equator
Coral reefs are retreating from equatorial waters and establishing new reefs in more temperate regions, according to new research in the journal Marine Ecology Progress Series.
Protecting coral reefs in a deteriorating environment
A new report examines novel approaches for saving coral reefs imperiled by climate change, and how local decision-makers can assess the risks and benefits of intervention.
Coral reefs can't return from acid trip
When put to the test, corals and coralline algae are not able to acclimatise to ocean acidification.
More Coral Reefs News and Coral Reefs Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.