Nav: Home

Evolving sets of gene regulators explain some of our differences from other primates

January 29, 2018

Cold Spring Harbor, NY - Today, biologists add an important discovery to a growing body of data explaining why we're different from chimps and other primate relatives, despite the remarkable similarity of our genes. The new evidence has to do with the way genes are regulated. It's the result of a comprehensive genome-wide computational analysis of multiple individuals across three primate species - human, chimpanzee and rhesus macaque.

The researchers focused on regulatory DNA elements are called gene enhancers and promoters. Promoters sit immediately "upstream" of genes and must be activated for the genes they regulate to be switched on. Less is known about enhancers, which can be located varying distances up- and downstream of the genes they regulate. Enhancers can be much farther away from the "gene body" than promoters, but can come close to the gene because of the looping structure of chromatin, the structure that packages the genome. Often, multiple enhancers are involved in a given gene's activation, in combinations that differ under differing circumstances.

Professor Adam Siepel's team at Cold Spring Harbor Laboratory (CSHL) with colleagues at Cornell University led by Dr. Charles Danko, used a technology called PRO-Seq to measure nascent transcription - the generation of RNA copies of genomic DNA up- and downstream of genes. It enables researchers to detect which promoters and enhancers are actively regulating a gene. They studied a single cell type, CD4+ T cells of the immune system, comparing levels of RNA copying when the cells were in quiescent and activated states in the three primate species.

The experiments revealed that while the activity of genes across the three species was quite similar in the CD4+ T cells, there were intriguing differences in the way genes were regulated. The team paid particular attention to collections of enhancers that jointly influence the expression of a target gene, as an ensemble. "These ensembles come in various sizes," Siepel explains, "and we found that when they are large, the expression levels of the target genes tend to be stable over evolutionary time. When they are small, the expression levels are less stable." Stability in gene expression is evidence of what scientists call evolutionary conservation - the preservation of a feature across species because of the advantage it confers.

Through careful analysis, the team identified various features that distinguish fast-evolving enhancers from slower ones. "Particularly interesting to us were cases in which large numbers of enhancers together determine the expression of a target gene," says Siepel, who is Director of the Simons Center for Quantitative Biology at CSHL. "In these cases, the genes tend to be more stable, but we found each individual enhancer is more likely to change." What's under evolutionary selection is the target expression level of a given gene, which in these situations is jointly determined by the whole ensemble.

The research reveals how programs for gene expression change during evolution, leading to the differences in behavior and morphology we observe between humans and other primates. These evolutionary mysteries also offer clues about mutations that cause diseases by altering gene regulation, Siepel notes.
-end-
Funding: Cornell University Center for Vertebrate Genomics; Center for Comparative and Population Genetics; National Human Genome Research Institute; National Heart, Lung, and Blood Institute; National Institute of General Medical Sciences; National Human Genome Research Institute; National Institute of Diabetes and Digestive and Kidney Diseases; Cancer Prevention and Research Institute of Texas.

Citation: Danko CG et al, "Dynamic evolution of regulatory element ensembles in primate CD4+ T cells" appears online in Nature Ecology & Evolution January 29, 2018.

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. Home to eight Nobel Prize winners, the private, not-for-profit Laboratory employs 1,100 people including 600 scientists, students and technicians. The Meetings & Courses Program annually hosts more than 12,000 scientists. The Laboratory's education arm also includes an academic publishing house, a graduate school and the DNA Learning Center with programs for middle and high school students and teachers. For more information, visit http://www.cshl.edu

Cold Spring Harbor Laboratory

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.