Nav: Home

New quantum system could help design better spintronics

January 29, 2019

Researchers have created a new testing ground for quantum systems in which they can literally turn certain particle interactions on and off, potentially paving the way for advances in spintronics.

Spin transport electronics have the potential to revolutionize electronic devices as we know them, especially when it comes to computing. While standard electronics use an electron's charge to encode information, spintronic devices rely on another intrinsic property of the electron: its spin.

Spintronics could be faster and more reliable than conventional electronics, as spin can be changed quickly and these devices use less power. However, the field is young and there are many questions researchers need to solve to improve their control of spin information. One of the most complex questions plaguing the field is how the signal carried by particles with spin, known as spin current, decays over time.

"The signal we need to make spintronics work, and to study these things, can decay. Just like we want good cell phone service to make a call, we want this signal to be strong," said Chuan-Hsun Li, a graduate student in electrical and computer engineering at Purdue University. "When spin current decays, we lose the signal." In the real world, electrons don't exist independently of everything around them and behave exactly how we expect them to. They interact with other particles and among different properties within themselves. The interaction between a particle's spin (an intrinsic property) and momentum (an extrinsic property) is known as spin-orbit coupling.

According to a new paper in Nature Communications, spin-orbit coupling and interactions with other particles can dramatically enhance spin current decay in a quantum fluid called Bose-Einstein condensate (BEC).

"People want to manipulate spin formation so we can use it to encode information, and one way to do this is to use physical mechanisms like spin-orbit coupling," Li said. "However, this can lead to some drawbacks, such as the loss of spin information."

The experiment was done in the lab of Yong Chen, a professor of physics and astronomy, and electrical and computer engineering at Purdue, where his team created something like a mini particle collider for BECs. Using lasers, Rubidium-87 atoms within a vacuum chamber were trapped and cooled nearly to absolute zero. (Physics junkies may recall that laser cooling technologies won the Nobel Prize in physics in 1997. Laser trapping won the Prize in 2018.)

At this point, the atoms become a BEC: the coldest and most mysterious of the five states of matter. As atoms get colder, they start to display wave-like properties. In this quantum state, they have an identity crisis; they overlap with one another and stop behaving like individuals. Although BEC isn't technically a gas, this might be the easiest way to picture it - physicists casually refer to it as quantum fluid or quantum gas.

Inside the mini quantum fluid collider, Chen's team sent two BECs with opposite spins smashing into one another. Like two clouds of gas would, they partially penetrate each other, delivering a spin current.

"A lot of fascinating phenomena occur when you collide two condensates. Originally, they're superfluid, but when they collide, part of the friction can turn them to thermal gas," Chen said. "Because we can control every parameter, this is a really efficient system to study these kinds of collisions."

Using this system, researchers can literally turn spin-orbit coupling on and off, which allows them to isolate its effect on spin current decay. This can't be done with electrons in solid-state materials, which is part of what makes this system so powerful, Chen said.

So-called quantum gas is the cleanest system man can make. There's no disorder, which makes it possible to create a pure spin current and study its properties. Chen hopes to keep using this experimental testing ground and their bosonic spin current to further explore many fundamental questions in spin transport and quantum dynamics.

"One important challenge for spintronics and other related quantum technologies is to reduce decay so we can propagate spin information over longer distances, for longer times," he said. "With this new knowledge of the role of spin-orbit coupling, this may help people gain new insights to reduce spin decay and potentially also design better spintronic devices."
-end-
This research was supported by Purdue University, the Purdue Research Foundation, the National Science Foundation, the U.S. Department of Energy, Department of Defense and Hong Kong Research Council.

Purdue University

Related Spintronics Articles:

Spinning electrons open the door to future hybrid electronics
A discovery of how to control and transfer spinning electrons paves the way for novel hybrid devices that could outperform existing semiconductor electronics.
A new spin on electronics
A University of Utah-led team has discovered that a class of 'miracle materials
Green IT: New switching process in non-volatile spintronics devices
Physicists achieved a robust and reliable magnetization switching process by domain wall displacement without any applied fields.
Spin-resolved oscilloscope for charge and spin signals
Researchers at the Tokyo Institute of Technology and Nippon Telegraph and Telephone Corporation have developed a 'spin-resolved oscilloscope.'
Surprising spin behavior at room temperature
Scientists at Tokyo Institute of Technology have observed almost purely circularly polarized electroluminescence from GaAs-based spin-polarized light-emitting diodes at room temperature, with no external magnetic field.
King Faisal Prize for Würzburg physicist
Another award for Laurens Molenkamp: The physicist won the King Faisal International Prize (KFIP) 2017 in the 'Science' category.
The world's first demonstration of spintronics-based artificial intelligence
Researchers at Tohoku University have, for the first time, successfully demonstrated the basic operation of spintronics-based artificial intelligence.
A new class of materials could realize quantum computers
Scientists at EPFL and PSI have discovered a new class of materials that can prove ideal for the implementation of spintronics.
Karin Everschor-Sitte establishes Emmy Noether independent junior research group TWIST
Theoretical physicist Dr. Karin Everschor-Sitte will be setting up an Emmy Noether independent junior research group at Johannes Gutenberg University Mainz with the aid of funding from the German Research Foundation.
Making the switch, this time with an insulator
Colorado State University physicists have demonstrated a new approach to low-power computer memory.

Related Spintronics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".