Nav: Home

New quantum system could help design better spintronics

January 29, 2019

Researchers have created a new testing ground for quantum systems in which they can literally turn certain particle interactions on and off, potentially paving the way for advances in spintronics.

Spin transport electronics have the potential to revolutionize electronic devices as we know them, especially when it comes to computing. While standard electronics use an electron's charge to encode information, spintronic devices rely on another intrinsic property of the electron: its spin.

Spintronics could be faster and more reliable than conventional electronics, as spin can be changed quickly and these devices use less power. However, the field is young and there are many questions researchers need to solve to improve their control of spin information. One of the most complex questions plaguing the field is how the signal carried by particles with spin, known as spin current, decays over time.

"The signal we need to make spintronics work, and to study these things, can decay. Just like we want good cell phone service to make a call, we want this signal to be strong," said Chuan-Hsun Li, a graduate student in electrical and computer engineering at Purdue University. "When spin current decays, we lose the signal." In the real world, electrons don't exist independently of everything around them and behave exactly how we expect them to. They interact with other particles and among different properties within themselves. The interaction between a particle's spin (an intrinsic property) and momentum (an extrinsic property) is known as spin-orbit coupling.

According to a new paper in Nature Communications, spin-orbit coupling and interactions with other particles can dramatically enhance spin current decay in a quantum fluid called Bose-Einstein condensate (BEC).

"People want to manipulate spin formation so we can use it to encode information, and one way to do this is to use physical mechanisms like spin-orbit coupling," Li said. "However, this can lead to some drawbacks, such as the loss of spin information."

The experiment was done in the lab of Yong Chen, a professor of physics and astronomy, and electrical and computer engineering at Purdue, where his team created something like a mini particle collider for BECs. Using lasers, Rubidium-87 atoms within a vacuum chamber were trapped and cooled nearly to absolute zero. (Physics junkies may recall that laser cooling technologies won the Nobel Prize in physics in 1997. Laser trapping won the Prize in 2018.)

At this point, the atoms become a BEC: the coldest and most mysterious of the five states of matter. As atoms get colder, they start to display wave-like properties. In this quantum state, they have an identity crisis; they overlap with one another and stop behaving like individuals. Although BEC isn't technically a gas, this might be the easiest way to picture it - physicists casually refer to it as quantum fluid or quantum gas.

Inside the mini quantum fluid collider, Chen's team sent two BECs with opposite spins smashing into one another. Like two clouds of gas would, they partially penetrate each other, delivering a spin current.

"A lot of fascinating phenomena occur when you collide two condensates. Originally, they're superfluid, but when they collide, part of the friction can turn them to thermal gas," Chen said. "Because we can control every parameter, this is a really efficient system to study these kinds of collisions."

Using this system, researchers can literally turn spin-orbit coupling on and off, which allows them to isolate its effect on spin current decay. This can't be done with electrons in solid-state materials, which is part of what makes this system so powerful, Chen said.

So-called quantum gas is the cleanest system man can make. There's no disorder, which makes it possible to create a pure spin current and study its properties. Chen hopes to keep using this experimental testing ground and their bosonic spin current to further explore many fundamental questions in spin transport and quantum dynamics.

"One important challenge for spintronics and other related quantum technologies is to reduce decay so we can propagate spin information over longer distances, for longer times," he said. "With this new knowledge of the role of spin-orbit coupling, this may help people gain new insights to reduce spin decay and potentially also design better spintronic devices."
This research was supported by Purdue University, the Purdue Research Foundation, the National Science Foundation, the U.S. Department of Energy, Department of Defense and Hong Kong Research Council.

Purdue University

Related Spintronics Articles:

New spin directions in pyrite an encouraging sign for future spintronics
An Australian study revealing new spin textures in pyrite could unlock these materials' potential in future spintronics devices.
FEFU and FEB RAS scientists are close to Integrate Silicon Electronics and Spintronics
Scientists from Far Eastern Federal University (FEFU) and the Far Eastern Branch of the Russian Academy of Sciences (FEB RAS) developed the nanoheterostructure consisted of a nanocrystal magnetite film (Fe3O4) covering a silicon substrate with an additional layer of silicon oxide (SiO2/Si).
Spintronics: Physicists discover new material for highly efficient data processing
A new material could aid in the development of extremely energy efficient IT applications.
Researchers get first microscopic look at a tiny phenomenon with big potential implications
Matter behaves differently when it's tiny. At the nanoscale, electric current cuts through mountains of particles, spinning them into vortexes that can be used intentionally in quantum computing.
A novel graphene-matrix-assisted stabilization method will help unique 2D materials to become a part
Scientists from Russia and Japan found a way of stabilizing two-dimensional copper oxide (CuO) materials by using graphene.
Unlocking magnetic properties for future faster, low-energy spintronics
An Australian collaboration combines theory and experimental expertise, discovering new magnetic properties of two-dimensional Fe3GeTe2 (FGT) towards spintronic applications promising faster, more efficient computing.
Small currents for big gains in spintronics
UTokyo researchers have created an electronic component that demonstrates functions and abilities important to future generations of computational logic and memory devices.
Manipulating electron spin using artificial molecular motors
Artificial molecular switches and machines have undergone rapid advances over the past several decades.
Neuron and synapse-mimetic spintronics devices developed
A research group from Tohoku University has developed spintronics devices which are promising for future energy-efficient and adoptive computing systems, as they behave like neurons and synapses in the human brain.
Ferromagnetic nanoparticle systems show promise for ultrahigh-speed spintronics
In the future, ultrahigh-speed spintronics will require ultrafast coherent magnetization reversal within a picosecond.
More Spintronics News and Spintronics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at