Nav: Home

Fungal decisions can affect climate

January 29, 2020

When we think of climate change, we tend to think about greenhouse gases, fossil fuels and pollution. Most of us don't think about fungi.

But Kathleen Treseder does. Treseder, an ecologist at the University of California, Irvine, studies how fungi can affect climate and vice-versa.

"Fungi are important to consider," she says. "They can influence nearly every aspect of ecosystems, especially processes that occur in soils."

New research from her lab shows that fungi can have different lifestyles in response to climate change. These findings can be incorporated into computational models that simulate ecosystems.

"We may be able to better predict shifts in atmospheric carbon dioxide levels and climate change," says Treseder. "That can help us estimate how much, when and where climate change will affect human societies."

It's important to be able to forecast which places will be hit by climate change and how quickly. These early warnings can help preparations, such as building sea walls or flood channels, or direct the development of new crop varieties.

Fungi are terrific decomposers. They break down organic material to get nutrients and energy. In doing so, they turn complex chemicals into simpler elements, such as carbon. In fact, "fungi are an integral part of the global carbon cycle," says Treseder. "They can move carbon from decomposing material into the atmosphere as carbon dioxide."

But fungi don't just release carbon. They can also store it. For example, environmental stress can cause fungi to strengthen their cell walls. They do so by using organic compounds that contain carbon. These carbon compounds can stay in soils for years to decades or even longer.

Treseder's research explores how fungi decide whether to use limited energy and resources to decompose material or for other processes. "No one can do everything well, and the same goes for fungi," says Treseder. "If fungi invest resources into one activity like decomposition, then those resources won't be available to support another activity like tolerating environmental stress."

These resource allocation decisions become even more important in a world with changing climate. "For example, will more extreme climates select for fungi that tolerate stress well, but cannot decompose dead material as efficiently?" says Treseder. "If so, then their production of carbon dioxide might decrease, slowing climate change."

To answer these questions, Treseder traveled to Alaska and Costa Rica. Experiments were set up in Alaskan Boreal forests and the cloud forests of Costa Rica. "

"We chose these locations because they are both endangered by climate change," says Treseder. "Northern ecosystems are warming particularly fast. Clouds are disappearing from the mountaintops of Costa Rica."

Treseder and colleagues exposed areas of the forests to drought-like conditions or more mellow environments. They collected soil samples from the different experimental areas.

Then they analyzed products made by fungal genes. These gene products served as indicators for whether the fungi were investing more resources toward decomposition or strengthening cell walls.

"We found that where drought stress increased, the amount of fungi that invested more in strengthening cell walls and less in decomposition tended to increase," says Treseder. In contrast, in more moderate conditions, the reverse occurred. Fungi that decomposed more efficiently became more common.

These findings suggest that fungi might store more carbon as global climate becomes more extreme. On the other hand, they might release more carbon dioxide in moderate climates. "These opposing feedbacks would not have been apparent without examining trade-offs among fungal traits," says Treseder.

Treseder is working to incorporate these findings into new and existing models of climate change. One particular area of focus are Earth system models that the Intergovernmental Panel on Climate Change uses for its official predictions. "We hope our research improves predictions of future trajectories of climate change," says Treseder.
-end-
Treseder presented her research at the 2019 International Annual Meeting of the American Society of Agronomy, Crop Science Society of America and Soil Science Society of America. This research was funded by the US Department of Energy and National Science Foundation.

American Society of Agronomy

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.