Nav: Home

First release of genetically engineered moth could herald new era of crop protection

January 29, 2020

A newly published study reports a successful, first-ever open-field release of a self-limiting, genetically engineered diamondback moth, stating that it paves the way for an effective and sustainable approach to pest control.

The diamondback moth, also known as Plutella xylostella, is highly damaging to brassica crops such as cabbage, broccoli, cauliflower and canola. This new strain of diamondback moth, developed by Oxitec Ltd, is modified to control pest diamondback moth in a targeted manner. The study showed the engineered strain had similar field behaviors to unmodified diamondback moths, with results offering promise for future protection of farmers' brassica crops.

The Cornell study was led by Professor Anthony Shelton in the Department of Entomology at Cornell University's AgriTech in New York and has been published in Frontiers in Bioengineering and Biotechnology.

Oxitec's self-limiting diamondback moth is modified to control its pest counterparts in the field. After release of males of this strain, they find and mate with pest females, but the self-limiting gene passed to offspring prevents female caterpillars from surviving. With sustained releases, the pest population is suppressed in a targeted, ecologically sustainable way. After releases stop, the self-limiting insects decline and disappear from the environment within a few generations.

The field test builds on previously published work in greenhouses by Professor Shelton and colleagues that demonstrated sustained releases of the self-limiting strain effectively suppressed the pest population and prevented resistance developing to an insecticide, a win-win situation for pest control.

"Our research builds on the sterile insect technique for managing insects that was developed back in the 1950s and celebrated by Rachel Carson in her book, Silent Spring," reports Professor Shelton. "Using genetic engineering is simply a more effiecient method to get to the same end."

Male moths as a crop protection solution

Employing field and laboratory testing, as well as mathematical modelling, the researchers gathered relevant information on the genetically engineered strain of diamondback moth, whose wild counterparts cause billions of dollars in damage. The study was the first in the world to release self-limiting agricultural insects into an open field.

"For the field study, we used the "mark-release-recapture" method, which has been used for decades to study insect movement in fields. Each strain was dusted with a fluorescent powder to mark each group before release, then captured in pheromone traps and identified by the powder color and a molecular marker in the engineered strain," explains Shelton.

Moth-proof results

The researchers were very pleased with the results of this comprehensive study.

"When released into a field, the self-limiting male insects behaved similarly to their non-modified counterparts in terms of factors that are relevant to their future application in crop protection, such as survival and distance travelled. In laboratory studies they competed equally well for female mates" reports Shelton. "Our mathematical models indicate that releasing the self-limiting strain would control a pest population without the use of supplementary insecticides, as was demonstrated in our greenhouse studies."

"This study demonstrates the immense potential of this exciting technology as a highly effective pest management tool, which can protect crops in an environmentally sustainable way and is self-limiting in the environment," says Dr Neil Morrison, Oxitec's agriculture lead and study co-author.
-end-
Notes to Editors

Please link to the original research article in your reporting: https://www.frontiersin.org/articles/10.3389/fbioe.2019.00482/full

PRESS CONTACTS:
For Cornell:
Dr Anthony Shelton/Samara Sit
Email: Samara.Sit@cornell.edu

For Oxitec:
Dr Neil Morrison/Joshua Van Raalte
Email: oxitec@agencybrazil.com

Frontiers is an award-winning Open Science platform and leading Open Access scholarly publisher. Our mission is to make research results openly available to the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. We empower scientists with innovative Open Science solutions that radically improve how science is published, evaluated and disseminated to researchers, innovators and the public. Access to research results and data is open, free and customized through Internet Technology, thereby enabling rapid solutions to the critical challenges we face as humanity. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

Frontiers

Related Moth Articles:

Diamondback moth uses plant defense substances as oviposition cues
Researchers showed that isothiocyanates produced by cruciferous plants to fend off pests serve as oviposition cues.
Nanostructures modeled on moth eyes effective for anti-icing
Researchers have been working for decades on improving the anti-icing performance of functional surfaces and work published in AIP Advances investigates a unique nanostructure, modeled on moth eyes, that has anti-icing properties.
Lyin' eyes: Butterfly, moth eyespots may look the same, but likely evolved separately
The iconic eyespots that some moths and butterflies use to ward off predators likely evolved in distinct ways, providing insights into how these insects became so diverse.
Deaf moths evolved noise-cancelling scales to evade prey
Some species of deaf moths can absorb as much as 85 per cent of the incoming sound energy from predatory bats -- who use echolocation to detect them.
First release of genetically engineered moth could herald new era of crop protection
For decades, the agriculture industry has been trying to find biological and environmentally friendly ways to manage the diamondback moth, which is widely resistant to insecticides.
Industrial melanism linked to same gene in 3 moth species
The rise of dark forms of many species of moth in heavily polluted areas of 19th and 20th century Britain, known as industrial melanism, was a highly visible response to environmental change.
Secrets to climate change adaptation uncovered in the European corn borer moth
Biologists have found two genes that may permit some insect species to survive climate change by adjusting their biological annual clocks while others succumb.
Caterpillars of the peppered moth perceive color through their skin
It is difficult to distinguish caterpillars of the peppered moth from a twig.
Russian scientists make discovery that can help remove gypsy moths from forests
The caterpillars of Lymantria dispar or Gypsy Moth are voracious eaters capable of defoliating entire forests.
Finnish researchers discover a new moth family
Two moth species new to science belonging to a previously unknown genus and family have been found in Kazakhstan, constituting an exceptional discovery.
More Moth News and Moth Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.