Nav: Home

Mountain vegetation dries out Alpine water fluxes

January 29, 2020

Until now, scientists assumed that most plants suffer from water stress during droughts: they close their stomata to retain water, stop growing and, in the worst case, wither. As a result, there is a decrease in evaporation and transpiration of water from vegetation, soil and water surfaces - a process that experts call evapotranspiration. "But despite dry and warm conditions, droughts are not occurring at higher altitudes in, say, forested mountain areas," says Simone Fatichi, senior assistant at the ETH Zurich Institute of Environmental Engineering.

Analyses of observations and computer model simulations from the heatwave of summer 2003 (and recent hot and dry summers) indicate that, during droughts, mountain forests and grasslands at higher elevations release even more water into the air than in "normal" periods of growth with average temperatures and sufficient precipitation.

This is because warmth and abundant sunshine promote vegetation growth. But at the same time, the vegetation has a higher metabolism, and so it essentially sucks every last drop of water from the ground in order to grow. For that reason, evapotranspiration was much greater than expected at higher altitudes during the droughts studied.

Green water predominates in dry and warm summers

Fatichi and his colleagues have now investigated this phenomenon across large areas in the European Alps for the first time, with the help of a computer model. This enabled them to quantify the share of "green" water, i.e. water that reaches the air through evapotranspiration, in proportion to that of "blue" water, the water that runs off into streams, rivers and lakes.

The researchers populated their model with data recorded at more than 1,200 stations throughout the Alpine region that measure, among other things, meteorological parameters and river runoff.

On the basis of their simulation, Fatichi and his doctoral student Theodoros Mastrotheodoros calculated that in forested mountain areas 1,300-3,000 metres above sea level, evapotranspiration rates were above average in large parts of the Alps during the heatwave of 2003.

That summer, Alpine water fluxes were on average only half their usual volume and, according to the ETH researchers' calculations, one third of this runoff deficit was attributable to evapotranspiration. Fatichi emphasises that "it is therefore the vegetation at this altitude that was instrumental in draining the half-dry rivers and streams."

Global warming amplifies evapotranspiration

As part of their investigation, the researchers also simulated a temperature rise of 3 degrees in the Alpine region - a scenario that could become reality by the end of this century and that could further increase annual evaporation rates by as much as 6 percent. In terms of precipitation, the amount of evaporated water would be comparable to an annual decline in the Alps of 45 litres per square metre on average - which corresponds to 3-4 percent of annual precipitation. This remarks that at the annual scale - differently from warm summers - precipitation and its changes are by far the most important factors that determine runoff volumes.

As a result, discharge volumes in rivers and streams will come under even greater pressure in future. "As summers become warmer and drier, we'll see a shift towards more green and less blue water," Fatichi says. In the long term, this will endanger the supply of water to the lower-lying regions in and around the Alps, he explains. Several factors play into this scenario: global warming is expected to result in a general reduction in precipitation, glaciers are set to dwindle and, in dry and warm summers, evapotranspiration will intensify the problem of lower runoff volumes.

Such circumstances could cast some doubt over the Alps' role as the "water towers of Europe". Four of Europe's major rivers, the Rhine, Rhône, Inn and Po, originate in the Alps. Together, they supply around 170 million people with water and play a crucial role in power generation and agriculture. A large part of Europe therefore depends on the blue water from the Alps, leading Fatichi to ask the question, "can we really afford to allow the volumes of this water to decline?"
Mastrotheodoros T, et al. More green and less blue water in the Alps during warmer summers. Nature Climate Change, published online 27th 2019, doi: 10.1038/s41558-?019-0676-5

ETH Zurich

Related Precipitation Articles:

Spread of monsoon circulation changes explains uncertainty in global land monsoon precipitation projection
A new study emphasizes the importance of reliable prediction of circulation changes, to ensure that future projections of global land monsoon are suitable for use by policy makers.
GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations
GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations.
The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.
Scientists find key factors impacting sideswiping tropical cyclone precipitation
Scientists find that the distribution of sideswiping tropical cyclones precipitation(STP) includes extreme STP events that appear not only over the island and coastal areas, but also over inland areas
Rainy season tends to begin earlier in Northern Central Asia
The researchers found robust increase of annual mean precipitation at the end of the 21st century under all modelling scenarios over northern central Asia.
Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones
Scientists find the cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate.
Precipitation will be essential for plants to counteract global warming
A new Columbia Engineering study shows that increased water stress--higher frequency of drought due to higher temperatures, is going to constrain the phenological cycle: in effect, by shutting down photosynthesis, it will generate a lower carbon uptake at the end of the season, thus contributing to increased global warming.
Fall precipitation predicts abundance of curly top disease and guides weed management
Transmitted by an insect known as the beet leafhopper, curly top disease is a viral disease affecting many crops, including melons, peppers, sugar beets, and tomatoes.
Study confirms climate change impacted Hurricane Florence's precipitation and size
A new modeling framework showed that Hurricane Florence produced more extreme rainfall and was spatially larger due to human-induced climate change.
Study shows link between precipitation, climate zone and invasive cancer rates in the US
In a new study, researchers provide conclusive evidence of a statistical relationship between the incidence rates of invasive cancer in a given area in the US and the amount of precipitation and climate type (which combines the temperature and moisture level in an area).
More Precipitation News and Precipitation Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at