Nav: Home

Historical impacts of development on coral reef loss in the South China Sea

January 29, 2020

New research led by The University of Hong Kong, Swire Institute of Marine Science in collaboration with Princeton University and the Max Planck Institute for Chemistry highlights the historical impacts of development on coral reef loss in the South China Sea. The findings were recently published in the journal Global Change Biology.

Using cutting-edge geochemical techniques pioneered by their Princeton collaborators, the team extracted minute quantities of nitrogen from coral skeletons, which grow in observable layers of growth similar to tree rings. Although more than 99% of the skeleton is calcium carbonate, the coral secretes a protein scaffolding upon which the minerals are attached. In this way, corals can control their calcification which increases in productive summer months and decreases in cool winter months leading to a tell-tale alternation of high and low density bands. Those bands were observed and measured using x-ray equipment at the Ocean Park veterinary hospital.

Using coral cores archived at The University of Hong Kong, and spanning research laboratories at HKU, Princeton, and the Max Planck Institute, the team, led by SWIMS postdoctoral fellow Dr Nicolas Duprey extracted skeletal material from each band to reconstruct a nearly 200-year time-series of change in the Pearl River Delta that pre-dated British colonization. The coral - still living as of 2007, had continuously recorded the conditions of its environment during that period of time by utilizing resources from seawater to build new skeleton. Nitrogen, a key component of the protein scaffolding, is one such element derived from the corals diet. Coincidentally, nitrogen also bears tell-tale signs of human disturbance through the increasing prevalence of sewage pollution and a rapidly changing landscape in the Pearl River catchment within Guangdong Province.

The well-documented collapse of southern Hong Kong coral communities in the 1980-1990s remained a mystery for the scientific community until now. The authors report that during the coral's lifespan, the human population within the multi-city megalopolis sky-rocketed some 3,000% to today's ~100 million people. Modern records showed that especially in the 1980s-1990s, during Hong Kong's rapid development and the reclamation of Victoria Harbour, water quality deteriorated substantially which coincided with severe losses of local coral reefs, especially in western waters.

"The precise detective work that our team has led over the last 5 years allowed us to identify the main culprit of this loss: water quality! This is a very interesting find because often time global warming is pointed out as the cause of coral decline worldwide; we often feel helpless facing this scenario because it involves changing drastically everybody's lifestyle on the planet to fix the problem. However, in the Pearl River Delta, the threat is different and originates from our poor handling of waste water treatment locally. Paradoxically, this is a good news because it implies that the solution to this problem is in our hands. Indeed, the improvement in waste water treatment in the 2000's was recorded in our coral skeleton, indicating that these efforts must be continued if we want corals to come back in Hong Kong, " said lead author Dr Nicolas Duprey.

Moreover, the coral skeleton revealed that in that specific timeframe a major anomaly in the nitrogen isotope ratio occurred. This was an indication that the source of nitrogen the coral used to build its skeletal scaffolding became was replaced by pollution. To verify this, the researchers also measured the isotope values from museum specimens held by the Smithsonian Institution and Yale Peabody Museum that were collected in Hong Kong in the 1800s during some of the first global biodiversity expeditions.
-end-
The open-access study, led by Associate Professor Dr David Baker and SWIMS postdoctoral fellow Dr Nicolas Duprey was funded by the Environment and Conservation Fund.

NN Duprey, XT Wang, T Kim, JD Cybulski, HB Vonhof, PJ Crutzen, GH Haug, DM Sigman, A Martínez-García, DM Baker (2019) Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River Estuary. Global Change Biologyhttps://doi.org/10.1111/gcb.14923

The University of Hong Kong

Related Nitrogen Articles:

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.
New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.
'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.