Nav: Home

Molecule modification could improve reprocessing of spent nuclear fuel

January 29, 2020

The reprocessing of spent nuclear fuel could become safer and more efficient in future after researchers found a way to modify the structure of molecules to remove radioactive materials.

The research is published in a recent edition of the influential Chemistry - A European Journal (7th January 2020) and is described by the editors of the journal as being of great significance.

The reprocessing operation

Nuclear energy offers a clean, low carbon source of electricity and is becoming a growing part of the energy provision in many countries worldwide. About 10% of the world's electricity is produced by nuclear power. However, nuclear power stations need fuel to produce electricity and this fuel becomes less efficient over time, and needs to be replaced after approximately five years.

Spent fuel is still highly radioactive and generates intense amounts of heat. Before being reprocessed or disposed of, it needs to be submerged in specialist cooling ponds under more than 40 feet of water. The water provides shielding from radioactivity and is continuously cooled to remove the intense heat from the fuel rods.

It takes more than a year for the fuel rods to cool to a point where they can be reprocessed to remove the uranium and plutonium elements, which can then be reused as fuel.

However, the elements americium, curium and neptunium, which are called the minor actinides, are still present and produce most of the heat and radioactivity of the remaining spent fuel. In addition, these elements remain highly radioactive for approximately 9,000 years, which makes the long-term storage and disposal of spent fuel extremely difficult to manage safely.

If these harmful radioactive elements could be removed it would significantly improve the safety and sustainability of nuclear energy because the remaining spent fuel would remain radioactive for approximately 300 years, which is a much more manageable timeframe.

Modifying the molecules

Molecules called triazines are capable of removing (or extracting) these harmful elements from spent nuclear fuel in a highly selective way, and have been known for some time. The researchers aimed to find out how modifying a certain part of these molecules could influence their ability to bind and extract these minor actinides at the molecular level. The knowledge and insights gained could be exploited to design better, more efficient molecules for spent nuclear fuel reprocessing in future.

The researchers changed the size of the aliphatic rings in the established benchmark molecules from 6-membered rings to 5-membered rings. They found that this small but subtle change had unexpected effects on how efficiently these molecules bind and extract the minor actinides compared to the benchmark molecules. The exact reasons for these effects were then determined at the molecular level using a range of experimental techniques.

Dr Frank Lewis, senior lecturer in organic chemistry in Northumbria University's Department of Applied Sciences said: "The findings are significant as they could allow better molecules to be designed in a more rational way, rather than simply by trial and error.

"The knowledge and insights we have gained by tuning the cyclic aliphatic part of these molecules could pave the way for the rational design of improved actinide selective ligands for reprocessing spent nuclear fuels. Modifying these molecules in different ways to improve their extraction properties could make future reprocessing more efficient and could be essential if they are to be used industrially in future.

"We believe that these results are of great importance to the field of nuclear energy, and this has been confirmed by the panel who reviewed the paper before publication."

Significant results

The editorial team at Chemistry A European Journal wrote to Dr Lewis and his colleagues saying: "According to the evaluation of referees, the results reported in this article are of great significance. Less than 20% of manuscripts receive such a positive review." The paper was also selected by the editors as a 'Hot Paper', and was highlighted in a Frontispiece graphic artwork.
-end-
The research was led by Dr Lewis with colleagues from Northumbria University; the University of Newcastle; the Institute of Energy and Climate Research at Research Centre Jülich; the Karlsruhe Institute of Technology's Institute for Nuclear Waste Disposal and the Physical Chemistry Institute at Heidelberg University.

The paper, Exploring the Subtle Effect of Aliphatic Ring Size on Minor Actinide Extraction Properties and Metal Ion Speciation in Bis-1,2,4-Triazine Ligands, is now published in Chemistry A European Journal.

Northumbria University

Related Nuclear Power Articles:

Nuclear medicine and COVID-19: New content from The Journal of Nuclear Medicine
In one of five new COVID-19-related articles and commentaries published in the June issue of The Journal of Nuclear Medicine, Johnese Spisso discusses how the UCLA Hospital System has dealt with the pandemic.
Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.
Study analyzes impact of switch from nuclear power to coal, suggests directions for policy
A new study used data from the United States to analyze the costs and benefits of electricity production from coal-fired versus nuclear sources.
TPU researchers discover how to improve safety of nuclear power plants
Researchers at Tomsk Polytechnic University found a method to increase fuel lifetime by 75%.
Nuclear physics -- probing a nuclear clock transition
Physicists have measured the energy associated with the decay of a metastable state of the thorium-229 nucleus.
Energy-efficient power electronics -- Gallium oxide power transistors with record values
The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (beta-Ga2O3).
Public dread of nuclear power limits its use
Nuclear power has been a part of the American energy portfolio since the 1950s, but for a number of reasons, the general public has long felt a significant dread about it.
Solar power -- largest study to date discovers 25 percent power loss across UK
Regional 'hot spots' account for the power slump and these are more prevalent in the North of England than in the south
New concept to cool boiling surface may help prevent nuclear power plant accidents
Mechanical Engineering Assistant Professor Sangwoo Shin has demonstrated a novel concept that overcomes the tolerable heat limit or what's known as the critical heat flux (CHF).
The vanishing nuclear industry
Could nuclear power make a significant contribution to decarbonizing the US energy system over the next three or four decades?
More Nuclear Power News and Nuclear Power Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.