Nav: Home

Guardian angel of the eye

January 29, 2020

The lens of the human eye comprises a highly concentrated protein solution, which lends the lens its great refractive power. Protective proteins prevent these proteins from clumping together throughout a lifetime. A team of scientists from the Technical University of Munich (TUM) has now uncovered the precise structure of the alpha-A-crystallin protein and, in the process, discovered an important additional function.

The refractive power of the human eye lens stems from a highly concentrated protein solution. These proteins are created during embryonic development and must then function for a whole life, as the lens has no machinery to synthesize or degrade proteins.

When lens proteins are damaged, the result is cataract - a clouding of the lens - or presbyopia. This is where protective proteins come in: They ensure that the proteins of the eye retain their form even under adverse environmental influences.

"The two protective proteins alpha-A and alpha-B-crystallin make up around 30 percent of the proteins in the human eye and are extremely important for the function of the lens," says Christoph Kaiser, first author of the publication in the journal Nature Structural and Molecular Biology.

Structure of a multifaceted protein

Attempts to determine the structure of alpha-A-crystallin were unsuccessful for over 40 years. The breakthrough came for a research team led by the TUM professors Sevil Weinkauf, professor of electron microscopy and Johannes Buchner, professor of biotechnology, by combining cryo-electron microscopy, mass spectrometry, NMR spectroscopy and molecular modeling.

"Alpha-A-crystallin is extremely multifaceted," says Sevil Weinkauf. "This makes it very difficult to determine its structure. It was only after developing a new strategy for data analysis that we were able to demonstrate that in solution it takes on different structures with 12, 16 or 20 subunits."

Protection against oxidation

The typical function of protective proteins is to help other proteins maintain their form when stressed, by high temperatures, for example. This is why they are also referred to as chaperones.

Alpha-A and alpha-B-crystallin, too, have this function. In addition, human alpha-A-crystallin has two cysteine residues. The sulfur atoms in these residues can form disulfide bridges. In-depth biochemical studies have shown that this bridging has a significant impact on various properties of the protein molecule.

"A common theory is that the disulfide bridges result from damage to the protein, for example through oxygen," says Johannes Buchner. "Our results suggest that alpha-A-crystallin might play an active role in protecting other proteins from oxidation."

Motivation for further research

The research team's investigations demonstrate that oxidized alpha-A-crystallin can even transfer the existing disulfide bridge to other proteins. "This ability corresponds to that of a protein disulfide oxidase," says Christoph Kaiser. "Alpha-A-crystallin can thus influence the redox state of other lens proteins. This function also explains why roughly half of the alpha-A-crystallins in embryos already have such disulfide bridges."

"Around 35 percent of all cases of blindness can be attributed to cataracts, says Sevil Weinkauf. "The molecular understanding of the functions of eye lens proteins forms an essential basis for developing prevention and therapy strategies. The realization that alpha-A-crystallin also plays an important role in protecting against oxidation will now spawn further research."
-end-
The research was funded by the German Research Foundation (SFB 1035 and Cluster of Excellence Center for Integrated Protein Science Munich) and the Wellcome Trust. Scientists from TU Munich, the Institute of Structural Biology at Helmholtz Zentrum München, the Institute for Biotechnology at the Technical University of Berlin and the Wellcome Center for Cell Biology at the University of Edinburgh (UK) participated in the research.

Publication:

Christoph J. O. Kaiser, Carsten Peters, Philipp W. N. Schmid, Maria Stavropoulou, Juan Zou, Vinay Dahiya, Evgeny V. Mymrikov, Beate Rockel, Sam Asami, Martin Haslbeck, Juri Rappsilber, Bernd Reif, Martin Zacharias, Johannes Buchner & Sevil Weinkauf
The structure and oxidation of the eye lens chaperone αA-crystallin
Nature Structural & Molecular Biology vol. 26, 1141-1150 (2019) - DOI: 10.1038/s41594-019-0332-9

Technical University of Munich (TUM)

Related Proteins Articles:

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.
Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.