Nav: Home

A new method of artificial intelligence inspired by the functioning of the human brain

January 29, 2020

Despite the immense progress in the field of AI in recent years, we are still very far from human intelligence. Indeed, if current AI techniques allow to train computer agents to perform certain tasks better than humans when they are trained specifically for them, the performance of these same agents is often very disappointing when they are put in conditions (even slightly) different from those experienced during training.

The human being is capable of adapting to new situations very effectively by using the skills he has acquired throughout his life. For example, a child who has learned to walk in a living room will quickly learn to walk in a garden as well. In such a context, learning to walk is associated with synaptic plasticity, which modifies the connections between neurons, while the rapid adaptation of walking skills learned in the living room to those needed to walk in the garden is associated with neuromodulation. Neuromodulation modifies the input-output properties of the neurons themselves via chemical neuromodulators.

Synaptic plasticity is the basis of all the latest advances in AI. However, no scientific work has so far proposed a way to introduce a neuromodulation mechanism into artificial neural networks. This result, described this week in the journal PLOS ONE, is the result of an extremely fruitful collaboration between neuroscientists and artificial intelligence researchers at the University of Liège developing intelligent algorithms: two PhD researchers, Nicolas Vecoven and Antoine Wehenkel, as well as two professors, Damien Ernst (specialist in artificial intelligence) and Guillaume Drion (neuroscientist).

These ULiège researchers have developed a completely original artificial neural network architecture, introducing an interaction between two sub-networks. The first one takes into account all the contextual information concerning the task to be solved and, on the basis of this information, neuromodule the second subnetwork in the manner of the brain's chemical neuromodulators. Thanks to neuromodulation, this second sub-network, which determines the actions to be performed by the intelligent agent, can therefore be adapted extremely quickly to the current task. This allows the agent to efficiently solve new tasks.

This innovative architecture has been successfully tested on classes of navigation problems for which adaptation is necessary. In particular, agents trained to move towards a target, while avoiding obstacles, were able to adapt to situations in which their movement was disrupted by extremely variable wind directions.

Prof. Damien Ernst: "The novelty of this research is that, for the first time, cognitive mechanisms identified in neuroscience are finding algorithmic applications in a multi-tasking context. This research opens perspectives in the exploitation in AI of neuromodulation, a key mechanism in the functioning of the human brain."
-end-


University of Liege

Related Human Brain Articles:

Researchers explore how the human brain is so resilient
Future technology may be able to monitor and modify the brain to produce enhanced team performance, while increasing the efficiency and accuracy of decisions.
Nanoelectronics learn the same way as the human brain
Activities in the field of artificial intelligence, like teaching robots to walk, demand ever more powerful, yet at the same time more economical computer chips.
New genomic atlas of the developing human brain
Researchers at Gladstone Institutes and UC San Francisco (UCSF) Weill Institute for Neurosciences have created a comprehensive region-specific atlas of the regulatory regions of the genome linked to human embryonic brain development.
Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
New method provides unique insight into the development of the human brain
Stem cell researchers at Lund University in Sweden have developed a new research model of the early embryonic brain.
One step closer to understanding the human brain
An international team of scientists led by researchers at Karolinska Institutet in Sweden has launched a comprehensive overview of all proteins expressed in the brain, published today in the journal Science.
Bee brain/human brain: New link
In a discovery which could open new avenues for understanding of the brain, researchers have found similarities between the brain activity of honey bees and humans.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
More Human Brain News and Human Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.