Nav: Home

Fungi as food source for plants

January 29, 2020

The number of plant species that extract organic nutrients from fungi could be much higher than previously assumed. This was discovered by researchers from the University of Bayreuth and the University of Copenhagen through isotope investigations on Paris quadrifolia, otherwise known as Herb Paris or True Lover's Knot. This forest-floor plant, which is widespread in Europe, is regarded in botany as a prototype for plants that have a specific exchange relationship with fungi, which in fact accounts for around 40 percent of all plant species. In "The New Phytologist" journal, the scientists report on their surprising results.

The research results show that the ecological importance of fungi is still considerably underestimated. "If it is confirmed that far more plant species than previously known obtain part of their organic nutrients from fungi, fungi will be shown to have a major impact on the biodiversity and function of ecosystems. Programmes and measures in nature conservation and environmental protection should therefore also increasingly consider fungi", says Philipp Giesemann M.Sc., the lead author of the study, who is currently doing his doctorate in biology at the University of Bayreuth and has been awarded a scholarship from the Elite Network of Bavaria (ENB).

Underground networks

Well over 90 percent of all plant species are linked to fungi via their underground root systems. Such a symbiosis of plants and fungi is called "mycorrhiza". Very often it is advantageous for both partners: While fungi supply the plant with minerals and water, the plant supplies local fungi with carbonaceous nutrients it has previously produced by photosynthesis. However, it also happens that plants "unfairly" exploit the fungi cross-linked with them. They then extract organic nutrients from their fungal partners instead of producing them themselves through photosynthesis. These nutrients have been transferred from trees to fungi, for example, and are now being tapped by a third plant using an underground root network. Such plants are therefore called "mycoheterotrophs". The best known example are the orchids: Because they can be partially or completely fed by fungi via underground root networks, they are not exclusively dependent on photosynthesis. Hence, they can thrive even in the darkest forests.

However, of the 80 per cent of all green plant species that utilize a form of mycorrhiza, researchers have up to now assumed it to always involve "fair" exchange relationships between plants and fungi. In this "arbuscular mycorrhiza" - so it was believed - the green plants are always completely autotrophic partners, producing vital organic nutrients themselves and partially releasing them to their fungal partners. But the studies on Paris quadrifolia now published refute this general assumption. The Bayreuth researchers were able to prove beyond doubt that this plant obtains part of its carbon-rich nutrients from fungal partners.

Herb Paris as prototype

"This finding could have far-reaching consequences for botany", explains the Bayreuth biologist Prof. Dr. Gerhard Gebauer, who coordinated the research work. "This is because experts distinguish between two forms of arbuscular mycorrhiza, each of which is used by about 40 percent of all plant species. In a sense, Herb Paris is considered a model for one of these two forms of plant symbiosis with fungi. In this respect, it is a prototype for far more than a third of all plant species. This raises the question of whether the number of plant species living at the expense of fungi is possibly much higher than previously thought. We have already discovered that another plant utilizing arbuscular mycorrhiza, the wood anemone, also enjoys a mycoheterotrophic way of life," said the biologist from Bayreuth.

In parallel, the researchers have also carried out analogous investigations on Arum maculatum, also known as Cuckoo Pint or Wild Arum. This plant is regarded as a prototype for the second form of arbuscular mycorrhiza, which is preferred by numerous agricultural crops. It behaves in a clearly autotrophic way and supplies itself by photosynthesis with all the carbonaceous nutrients it needs.

Background

The research results on the mycoheterotrophic lifestyle of Herb Paris are based on isotope studies. It has long been known that plants supplied with carbon and nitrogen by fungi have a comparatively high proportion of heavy carbon, hydrogen, and nitrogen isotopes. In autotrophic plants the proportion of these isotopes is lower. The Laboratory for Isotope Biogeochemistry at the Bayreuth Center for Ecology and Environmental Research (BayCEER) is specialized in determining nutrient fluxes within ecosystems using isotopes.
-end-
Contact:

Prof. Dr. Gerhard Gebauer
Head of the Laboratory for Isotope Biogeochemistry in the Bayreuth Centre for Ecology & Environmental Research (BayCEER)
University of Bayreuth
E-mail: gerhard.gebauer@uni-bayreuth.de
Phone: +49 (0) 921 / 55-2060

Universität Bayreuth

Related Photosynthesis Articles:

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.
Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.
Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
Structure and function of photosynthesis protein explained in detail
An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I.
More Photosynthesis News and Photosynthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.