Nav: Home

Researchers combine technologies to resolve plant pathogen genomes

January 29, 2020

With the help of new genomic sequencing and assembly tools, plant scientists can learn more about the function and evolution of highly destructive plant pathogens that refuse to be tamed by fungicides, antibacterial, and antivirals.

But using these genomic technologies is not an easy task. The process not only requires time, but also money. In a recent paper published in Molecular Plant-Microbe Interactions, David Haak and John McDowell, from the School of Plant and Environmental Sciences in the College of Agriculture and Life Sciences, proved that these costly processes can be improved by combining two generations of technology.

What used to take a year-and-a-half and $2 million to complete can now be done within nine days for $1,000 - and the technology performs with greater accuracy and field applicability than ever before.

"Think of it as analogous to a library full of books that are two-thirds or three-quarters completely written. What David has developed is a technology through which he could go to the library and finish those books really quickly and really accurately for a really low price point," said McDowell, the J. B. Stroobants Professor of Biotechnology.

Before this project began, Haak, an assistant professor, and his team had been trying to prove that it was possible to generate a completed assembly in a relatively short period of time - but they needed a relatively complex genome to test their theory. A few hallway conversations later, Haak and his students joined forces with McDowell and his team to unravel the complex genome of Phytophthora capsici.

"P. capsici is a representative of a really destructive group of pathogens. Its evolutionary cousin is the pathogen that caused the Irish Potato Famine in the 19th century, which killed at least a million people and caused at least a million more to relocate. These pathogens are still causing difficulty today," said McDowell. "One of the reasons for that is because their genomes are exquisitely configured to enable them to evolve ways around interventions that farmers put in place in the field."

A microscopic image of a large root, which divides the photo into two diagonal sections. On each side of the root, there are many P. capsici spores, which resemble lollipops.

An image of P. capsici spores that are attached to an Arabidopsis root and initiating the process of penetration. John Herlihy for Virginia Tech.

In this species of pathogen, virulence genes are often located in gene-poor regions interspersed with repetitive regions within the genome. These repetitive regions are prone to rapid evolution and are the key to understanding its pathogenicity, or its ability to cause disease.

To better understand the inner workings of P. capsici, scientists must extract a DNA sample from the pathogen and perform genetic sequencing. Genetic sequencing is a process that determines the order of the nitrogenous bases - or the As, Cs, Gs, and Ts - that make up an organism's DNA.

However, genomic sequencing can read only a certain amount of DNA segments at one time. Scientists must then take these small sequences and re-assemble them so that the DNA is presented in the right order.

"Generating the sequence data, isn't really the problem. It's assembling that data. It's putting together the sequence information in the right order. The repeat-rich regions make us sometimes put two genes together that don't belong together or separate a full gene into two halves because we think a repeat goes right in the middle," said Haak.

All in all, resolving the genome of an organism requires powerful technology - and patience. And although bioinformatic technology has made great leaps and bounds over the years, each generation isn't necessarily better than the last. Each generation of technology has its own forte.

Using first-generation technology, it would take one-and-a-half years and around $2 million to sequence the P. capsici genome. But with Haak's technology, it will take just nine days from DNA extraction to a polished assembly - and only cost $1,000. To make things even better, this technology will be able to sequence 100,000 times more information in roughly 1.5 percent of the time. And the technology is the size of a thumb drive.

Second-generation technology performs short read assemblies, which are extremely accurate; however, they do not span across repetitive regions well. And when scientists must go back and reassemble the genome, there is a reasonable chance of error.

"What happens with the short reads is that we don't know where those repeats begin and end, so we don't know where to put them to arrange them appropriately," said Haak.

Oxford Nanopore Technologies (ONT) MinION, or long-read sequencing, is the third generation of sequencing technology, but it has the opposite problem: it is far less accurate but it can give them a better overall picture by spanning across these critical repetitive regions.

Haak and his team combined these second- and third-generation technologies to exploit the accuracy of the former with the ability to span the repeated regions of the latter. It's the best of both worlds.

Upon using this new technology on P. capsici, Haak and McDowell got quite a shock. Haak and his group revealed that the genome is 1.5 times bigger than previously thought.

"That's 30 percent of the genome that we didn't even know existed, and that particular fraction of the genome is, undoubtedly, enriched with the sorts of genes that really make a difference in helping us understand what interacts with the plant or responds to fungicides or farmers' spray," said McDowell.

For Haak, the most exciting thing about the results of this paper is its proof-of-concept.

"We have something called the sequence archive database, which is full of all sorts of short-read sequences. We can actually leverage all of that existing data with this newer technology to be able to produce more genomes of this quality," said Haak.

Haak's new generation of technology is expected to revolutionize the way in which scientists collect genomic data. With their newly acquired, affordable, real-time data, scientists will be able to improve previous assemblies and quickly generate new ones that they can share to the sequence archives database. On a grander scale, this technology will advance the field of plant genomics and the worldwide effort to save the crop industry from destructive pathogens.

Now that Haak and McDowell have an estimated 97 percent of the genome for P. capsici in their grasps, they plan to use this information as supporting data for two new grant proposals. One proposal will focus on tomato and soybean diseases caused by pathogens of the Phytophthora group and the other proposal will focus on lavender, yet another victim of Phytophthora.

For Haak, this project was special because it was supported by a grant from the Fralin Life Sciences Institute at Virginia Tech with funds allocated to support the Global Systems Science Destination Area.

McDowell added, "I think it speaks to the environment here at Virginia Tech, promoted by Fralin, that enables these sorts of collaborations to come together and get some critical support in the early phase."
-end-


Virginia Tech

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.