Nav: Home

Scientists discover how malaria parasites import sugar

January 29, 2020

The consumption of sugar is a fundamental source of fuel in most living organisms. In the malaria parasite Plasmodium falciparum, the uptake of glucose is essential to its life cycle. Like in other cells, sugar is transported into the parasite by a transport protein - a door designed for sugar to pass through the cell membrane. The details in how this door works has now been revealed.

"By elucidating the atomic structure of the sugar-transporting-protein PfHT1, we can better understand how glucose is transported into the parasite", says David Drew, Wallenberg Scholar at the Department of Biochemistry and Biophysics and leading the study at Stockholm University.

The main goal of the research is basic understanding of this important biological process, but with the potential for development of new antimalarial drugs. Malaria kills almost half a million persons each year, according to the WHO. By blocking the door for sugar, it has been shown that one can stop the growth of the malaria parasites.

"It's a long process from a compound with antimalarial activity to a drug that can be taken in the clinic. However, with this knowledge one can improve known antimalarial compounds so that they are more specific to the malarial transporter, so they do not have the side-effect of stopping sugar transport into our own cells. As such, this knowledge increases the likelihood that more specific compounds can be developed into a successful drug", says David Drew.

Despite million's years of evolution between parasites and humans the research show that glucose is surprisingly captured by the sugar transporting protein in malaria parasites in a similar manner as by transporters in the human brain.

"This conservation reflects the fundamental importance of sugar uptake - basically, nature hit on a winning concept and stuck with it", says David Drew.

However, the malaria parasite is more flexible. Other sugars, such as fructose, can also be imported. This flexibility could give a selective advantage to the malaria parasite so that it can survive under conditions when its preferred energy source glucose is unavailable.

"Every biochemistry student is taught about the process of sugar transport and it is exciting to add another important piece to this puzzle", says Lucie Delemotte, Associate Professor of Biophysics at KTH Royal Institute of Technology and Science for Life Laboratory Fellow, who collaborated on this project.
-end-
The article "The molecular basis for sugar import in malaria parasites" is published in the scientific journal Nature.

The research was funded by The Knut and Alice Wallenberg foundation and Science for Life Laboratory.

Stockholm University

Related Parasites Articles:

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.
Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.
How malaria parasites become resistant to artemisinin antimalarial drugs
Malaria parasite mutations that inhibit the endocytoic appetite for a host's red blood cells may render them resistant to artemisinin, a widely used frontline antimalarial drug, according to a new study, which reveals a key molecular mechanism of drug resistance.
Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Airless worms: A new hope against drug-resistant parasites
Toronto scientists have uncovered a metabolic pathway that only exists in parasitic worms.
Parasites dampen beetle's fight or flight response
Beetles infected with parasitic worms put up less of a fight against simulated attacks from predators and rival males, according to a study by Felicia Ebot-Ojong, Andrew Davis and Elizabeth Jurado at the University of Georgia, USA, publishing May 22, 2019 in the open-access journal PLOS ONE.
Genome structure of malaria parasites linked to virulence
An international research team led by scientists at the University of California, Riverside, and the La Jolla Institute for Immunology has found that malaria parasite genomes are shaped by parasite-specific gene families, and that this genome organization strongly correlates with the parasite's virulence.
Parasites discovered in fossil fly pupae
Parasitic wasps existed as early as several million years ago.
Migratory animals carry more parasites, says study
Every year, billions of animals migrate across the globe, carrying parasites with them and encountering parasites through their travels.
More Parasites News and Parasites Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.