Nav: Home

Brain tumors remodel neuronal synapses to promote growth

January 29, 2020

Scientists at Baylor College of Medicine have found new evidence that glioma, a lethal form of brain cancer, alters the activity of neighboring neurons, accelerating a vicious cycle that drives tumor-associated epilepsy and tumor progression.

Their findings, published in Nature, showed that several variants of the PIK3CA gene drive tumor progression and that two variants in particular alter the expression of genes involved in synapses - junctions through which neurons communicate.

"Using a new functional genomics strategy, our research reveals a dynamic interplay between glioma cells and adjacent neurons," said corresponding author Dr. Benjamin Deneen, professor of neurosurgery and in the Center for Stem Cell and Regenerative Medicine. "In this regard, glioma tumors exhibit Machiavellian behavior - glioma cells remodel the neuronal microenvironment toward hyperactivity, which in turn feeds back to the tumor, promoting its own growth."

Identifying gene variants that drive glioma


The original goal of this study was to develop an experimental system that would enable researchers to identify new cancer genes in mouse models of brain tumors. To achieve this goal, a collaboration began between the Deneen lab and Baylor co-author Dr. Kenneth L Scott. Together, they genetically engineered their mouse model of glioma into a novel, high-throughput screening platform to identify these PIK3CA variants.

Using their novel screening platform, the researchers discovered several variants of PIK3CA that drive glioma development. Two of the PIK3CA variants, named C420R and H1047R, stood out because they were the strongest drivers of tumor development. Interestingly, some of the genes specifically expressed in C420R and H1047R gliomas are involved in synapse formation, suggesting that the tumors may affect the synaptic balance of neighboring neurons.

"These gene variants produce proteins that differ in only one amino acid - the building blocks of proteins - yet some of the variants generate tumors with molecular profiles that are quite different from the others. This was quite a surprise and tells us that seemingly similar PIK3CA variants promote glioma formation through very different mechanisms," said Deneen, who also is a member of the Dan L Duncan Comprehensive Cancer Center and holds the Marianne and Russell Blattner Chair at Baylor.

Glioma sets conditions that favor its own progression


To investigate these different mechanisms, Deneen and colleagues focused on the synaptic gene signatures, hypothesizing that these alterations in synaptic gene expression could lead to seizures, network hyperexcitability and direct synaptic changes in their mouse model of glioma. To conduct these studies, Deneen partnered with co-author Dr. Jeffrey L Noebels, professor of neurology, neuroscience, and molecular and human genetics and Cullen Trust for Health Care Endowed Chair in Neurogenetics at Baylor.

"It is well established that synaptic imbalance can result in extensive changes in neuronal network connectivity and excitability, which in some cases culminates in seizure activity," Deneen said. "Seizures are typical in glioma, but the underlying cellular and genetic mechanisms are not well understood. We took this finding as an opportunity to explore whether different PIK3CA variants can induce epilepsy in glioma and also to understand more about the mechanisms by which tumors promote neuronal hyperexcitability."

Their studies showed that, indeed, gliomas driven by C420R and H1047R variants do promote early onset of hyperexcitability in neurons surrounding the tumor and remodel synaptic networks by inducing synapse formation. Mice carrying these tumors had seizures that appeared much earlier than in mice bearing tumors driven by other PIK3CA variants.

Digging deeper into the mechanisms that mediate the effect of C420R and H1047R gliomas on their microenvironment, the researchers discovered that these gliomas selectively secreted several molecules of the glypican (GPC) family and that GPC3 drove hyperexcitability and synaptic remodeling. Further, they found that GPC3 itself can drive glioma formation.

These findings provide the first evidence of a glioma-derived mechanism that manipulates the neuronal microenvironment during tumor progression.

"We have uncovered a central mechanism by which glioma cells alter neurons to establish environmental conditions in the brain that support growth. Therapeutically, we are actively examining how short circuiting glioma-to-neuron communication can be used to treat patients with these malicious brain tumors," Deneen said.
-end-
Other contributors to this work include Kwanha Yu, Chia-Ching John Lin, Asante Hatcher, Brittney Lozzi, Kathleen Kong, Emmet Huang-Hobbs, Yi-Ting Cheng, Vivek B Beechar, Wenyi Zhu, Yiqun Zhang, Fengju Chen, and Chad J Creighton, all at Baylor College of Medicine. Gordon B Mills is at Oregon Health Science University and Carrie A Mohila at Texas Children's Hospital.

This study was supported by grants from the Cancer Prevention Research Institute of Texas (RP150334 and RP160192), National Cancer Institute-Cancer Therapeutic Discovery (U01-CA217842), National Institutes of Health (R01-CA223388 and T32-HL902332), the American Cancer Society-Rob Rutherford Glioblastoma Research Postdoctoral Fellowship (PF-15-220-01-TBG), and Howard Hughes Medical Institute Gilliam Fellowship. The authors acknowledge the assistance of the Baylor College of Medicine Mouse Phenotyping Core funded by NIH grant U54-HG006348, the BCM Small Animal MRI and Texas Children's Hospital Small Animal Imaging Facility, and the National Cancer Institute-funded (# CA16672) Functional Proteomics RPPA Core Facility at MD Anderson Cancer Center.

The authors dedicate this work to co-author Dr. Kenneth L Scott, associate professor of molecular and human genetics at Baylor College of Medicine, a leader and major force behind this project, who passed away before completion of the study.

Baylor College of Medicine

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.