Nav: Home

Sex pheromone named for Jane Austen character alters brain in mouse courtship

January 29, 2020

NEW YORK -- The infamously aloof Mr. Darcy had a hard time attracting members of the opposite sex in Jane Austen's Pride and Prejudice. But the same cannot be said for a sex pheromone named for him, called darcin. In a new study, a Columbia University-led team of researchers has now uncovered the process by which this protein takes hold in the brains of female mice, giving cells in the brain's emotion center the power to assess the mouse's sexual readiness and help her select a mate.

These findings, published today in Nature, illustrate the power of a single protein to change the brain and drive behavior. They also demonstrate how a cluster of cells in one brain area integrates information from the outside world with the animal's own internal state.

"Pheromones act as powerful scent messages to signal the presence of danger, food or prospective mates," said Ebru Demir, PhD, the paper's first author. "With today's study, we've mapped the route that the pheromone darcin takes from the nose to the brain, bringing much-needed understanding to the mechanisms by which animals use scents to communicate," added Dr. Demir, who is an associate research scientist in the laboratory of Nobel Laureate Richard Axel, MD, at Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute.

While the existence of pheromones in humans is controversial, rodents and many other animals rely on pheromones as a way to signal everything from potential danger to a willingness to mate.

Darcin is one such pheromone, discovered in 2010 by Robert Beynon, PhD, and Jane Hurst, PhD, and their team at the University of Liverpool. Dr. Hurst and her colleagues found that male mice release darcin in their urine to mark their territory and to initiate courtship displays. Sniffing a male's darcin helps a female to both identify him and decide whether to mate with him. This entire process is initiated in a biologically unusual way.

Normally, mice make sense of odors using olfactory receptors in the nose. These specialized proteins send information about a scent to a designated location in the brain for further processing. Dr. Axel, who is codirector at Columbia's Zuckerman Institute, received the 2004 Nobel Prize in Physiology or Medicine jointly with Linda Buck, PhD, for their work identifying the genes that encode these receptors.

Pheromones, such as darcin, are processed somewhat differently. They interact with a second, parallel olfactory system, which exists in animals like mice but not in people.

"Unlike people, mice have essentially two functional noses," said Dr. Demir. "The first nose works like ours: processing scents such as the stinky odor particles found in urine. But a second system, called the vomernasal nose, evolved specifically to perceive pheromones like darcin."

For today's study, the research team, which also included Dr. Hurst, Dr. Beynon and co-senior author Adam Kepecs, PhD, of Cold Spring Harbor Laboratory, first exposed female mice to darcin-scented urine and monitored their behavior. Nearly all of the female mice showed an immediate attraction to darcin. Then, after about 50 minutes, some females began leaving their own urinary scent markings. They also started to sing, at ultrasonic frequencies too high for the human ear to hear. Both of these behaviors are an indicator of increased sexual drive.

Not all females performed these displays. Lactating mothers, for example, appeared to largely ignore the darcin-scented areas after an initial sniff of interest.

The reason for this difference, the scientists proposed, may lie in a brain region called the medial amygdala. The research team identified a subset of brain cells, or neurons, in this brain area, called nNOS neurons, that switched on in the presence of darcin.

"By artificially activating those neurons, we could simulate the animals' response to darcin and elicit the same behaviors," said Dr. Demir. "When we silenced these neurons, the animal lost interest in darcin entirely."

The neurons' location in the medial amygdala was particularly intriguing. This brain area is generally associated with hardwired emotional responses, such as fear or anger. In the case of the darcin pheromone, though, the medial amygdala may serve another role.

"Our results suggest that nNOS neurons in the medial amygdala do not simply pass along information about darcin," said Dr. Demir. "These neurons seem to be integrating sensory information about the pheromone with the internal state of the animal, such as whether she is a lactating mother and therefore not interested in mating."

Going forward, the research team plans to delve deeper into the neural circuitry that responds to pheromones and how changes to that circuitry drive behavior. They also hope their findings will serve to update how pheromones are defined.

"Pheromones have long been associated with an innate, immediate behavioral response, but here we have shown that darcin can elicit complex behaviors that are dependent on the internal state of the animal," said Dr. Demir. "As we continue our investigations, it's possible that other pheromones may also act on the brain in similarly unexpected and complex ways."
This paper is titled "The pheromone darcin drives a circuit for innate and reinforced behaviours." Additional contributors include Kenneth Li, Natasha Bobrowski-Khoury and Joshua Sanders, PhD.

This research was supported by the Howard Hughes Medical Institute, the Biotechnology and Biological Sciences Research Council and the Robert E. Leet and Clara Guthrie Patterson Trust Fellowship.

The authors report no financial or other conflicts of interest.

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute brings together a group of world-class scientists and scholars to pursue the most urgent and exciting challenge of our time: understanding the brain and mind. A deeper understanding of the brain promises to transform human health and society. From effective treatments for disorders like Alzheimer's, Parkinson's, depression and autism to advances in fields as fundamental as computer science, economics, law, the arts and social policy, the potential for humanity is staggering. To learn more, visit:

The Zuckerman Institute at Columbia University

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.