Nav: Home

NSF's newest solar telescope produces first images, most detailed images of the sun

January 29, 2020

Just released first images from the National Science Foundation's Daniel K. Inouye Solar Telescope reveal unprecedented detail of the sun's surface and preview the world-class products to come from this preeminent 4-meter solar telescope. NSF's Inouye Solar Telescope will enable a new era of solar science and a leap forward in understanding the sun and its impacts on our planet.

Activity on the sun, known as space weather, can affect systems on Earth. Magnetic eruptions on the sun can impact air travel, disrupt satellite communications and bring down power grids, causing long-lasting blackouts and disabling technologies such as GPS.

This first images from NSF's Inouye Solar Telescope show a close-up view of the sun's surface, which can provide important detail for scientists. The image shows a pattern of turbulent "boiling" plasma that covers the entire sun. The cell-like structures - each about the size of Texas - are the signature of violent motions that transport heat from the inside of the sun to its surface. That hot solar plasma rises in the bright centers of "cells," cools off and then sinks below the surface in dark lanes in a process known as convection. (See video available with this news release.)

"Since NSF began work on this ground-based telescope, we have eagerly awaited the first images," said France Córdova, NSF director. "We can now share these images and videos, which are the most detailed of our sun to date. NSF's Inouye Solar Telescope will be able to map the magnetic fields within the sun's corona, where solar eruptions occur that can impact life on Earth. This telescope will improve our understanding of what drives space weather and ultimately help forecasters better predict solar storms."

Illuminating what we know about our nearest star

The sun is our nearest star -- a gigantic nuclear reactor that burns about 5 million tons of hydrogen fuel every second. It has been doing so for about 5 billion years and will continue for the other 4.5 billion years of its lifetime. All that energy radiates into space in every direction, and the tiny fraction that hits Earth makes life possible. In the 1950s, scientists figured out that a solar wind blows from the sun to the edges of the solar system. They also deduced for the first time that we live inside the atmosphere of this star. But many of the sun's most vital processes continue to confound scientists.

"On Earth, we can predict if it is going to rain pretty much anywhere in the world very accurately, and space weather just isn't there yet," said Matt Mountain president of the Association of Universities for Research in Astronomy, which manages the Inouye Solar Telescope. "Our predictions lag behind terrestrial weather by 50 years, if not more. What we need is to grasp the underlying physics behind space weather, and this starts at the sun, which is what the Inouye Solar Telescope will study over the next decades."

Solar magnetic fields constantly get twisted and tangled by the motions of the sun's plasma. Twisted magnetic fields can lead to solar storms that can negatively affect our technology-dependent modern lifestyles. During 2017's Hurricane Irma, the National Oceanic and Atmospheric Administration reported that a simultaneous space weather event brought down radio communications used by first responders, aviation and maritime channels for eight hours on the day the hurricane made landfall.

Finally resolving these tiny magnetic features is central to what makes the Inouye Solar Telescope unique. It can measure and characterize the sun's magnetic field in more detail than ever seen before and determine the causes of potentially harmful solar activity.

"It's all about the magnetic field," said Thomas Rimmele, director of the Inouye Solar Telescope. "To unravel the sun's biggest mysteries, we have to not only be able to clearly see these tiny structures from 93 million miles away but very precisely measure their magnetic field strength and direction near the surface and trace the field as it extends out into the million-degree corona, the outer atmosphere of the sun."

Better understanding the origins of potential disasters will enable governments and utilities to better prepare for inevitable future space weather events. It is expected that notification of potential impacts could occur earlier - as much as 48 hours ahead of time instead of the current standard, which is about 48 minutes. This would allow for more time to secure power grids and critical infrastructure and to put satellites into safe mode.

The engineering

To achieve the proposed science, this telescope required important new approaches to its construction and engineering. Built by NSF's National Solar Observatory and managed by AURA, the Inouye Solar Telescope combines a 13-foot (4-meter) mirror - the world's largest for a solar telescope - with unparalleled viewing conditions at the 10,000-foot Haleakalā summit.

Focusing 13 kilowatts of solar power generates enormous amounts of heat - heat that must be contained or removed. A specialized cooling system provides crucial heat protection for the telescope and its optics. More than seven miles of piping distribute coolant throughout the observatory, partially chilled by ice created on site during the night.

The dome enclosing the telescope is covered by thin cooling plates that stabilize the temperature around the telescope, helped by shutters within the dome that provide shade and air circulation. The "heat-stop" (a high-tech, liquid-cooled metal donut) blocks most of the sunlight's energy from the main mirror, allowing scientists to study specific regions of the sun with unparalleled clarity.

The telescope also uses state-of-the-art adaptive optics to compensate for blurring created by Earth's atmosphere. The design of the optics ("off-axis" mirror placement) reduces bright, scattered light for better viewing and is complemented by a cutting-edge system to precisely focus the telescope and eliminate distortions created by the Earth's atmosphere. This system is the most advanced solar application to date.

"With the largest aperture of any solar telescope, its unique design, and state-of-the-art instrumentation, the Inouye Solar Telescope - for the first time - will be able to perform the most challenging measurements of the sun," Rimmele said. "After more than 20 years of work by a large team devoted to designing and building a premier solar research observatory, we are close to the finish line. I'm extremely excited to be positioned to observe the first sunspots of the new solar cycle just now ramping up with this incredible telescope."

Ushering in a new era of solar astronomy

NSF's new ground-based Inouye Solar Telescope will work with space-based solar observation tools such as NASA's Parker Solar Probe (currently in orbit around the sun) and the European Space Agency/NASA Solar Orbiter (soon to be launched). The three solar observation initiatives will expand the frontiers of solar research and improve scientists' ability to predict space weather.

"It's an exciting time to be a solar physicist," said Valentin Pillet, director of NSF's National Solar Observatory. "The Inouye Solar Telescope will provide remote sensing of the outer layers of the sun and the magnetic processes that occur in them. These processes propagate into the solar system where the Parker Solar Probe and Solar Orbiter missions will measure their consequences. Altogether, they constitute a genuinely multi-messenger undertaking to understand how stars and their planets are magnetically connected."

"This image is just the beginning," said David Boboltz, program director in NSF's division of astronomical sciences and who oversees the facility's construction and operations. "Over the next six months, the Inouye telescope's team of scientists, engineers and technicians will continue testing and commissioning the telescope to make it ready for use by the international solar scientific community. The Inouye Solar Telescope will collect more information about our sun during the first 5 years of its lifetime than all the solar data gathered since Galileo first pointed a telescope at the sun in 1612."

On December 15, 2013 the telescope formerly known as the Advanced Technology Solar Telescope was renamed the Daniel K. Inouye Solar Telescope in honor of the late senator from Hawaii. Senator Inouye was a tireless proponent of science, technology, engineering and math, especially when it came to enriching the lives of the people of Hawaii. NSF's Inouye Solar Telescope, located on Haleakala on the Island of Maui, Hawaii, will provide a state-of-the-art scientific and educational resource for Hawaiians and the entire global community for the next 50 years.
-end-
For multimedia resources, visit: https://www.nso.edu/inouye-solar-telescope-first-light/. More materials, including the First Light images will be added to this web page.

National Science Foundation

Related Magnetic Field Articles:

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.
Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.
Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.
How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.
Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.
Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.
New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.
Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Adhesive which debonds in magnetic field could reduce landfill waste
Researchers at the University of Sussex have developed a glue which can unstick when placed in a magnetic field, meaning products otherwise destined for landfill, could now be dismantled and recycled at the end of their life.
Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
More Magnetic Field News and Magnetic Field Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

How to Win Friends and Influence Baboons
Baboon troops. We all know they're hierarchical. There's the big brutish alpha male who rules with a hairy iron fist, and then there's everybody else. Which is what Meg Crofoot thought too, before she used GPS collars to track the movements of a troop of baboons for a whole month. What she and her team learned from this data gave them a whole new understanding of baboon troop dynamics, and, moment to moment, who really has the power.  This episode was reported and produced by Annie McEwen. Support Radiolab by becoming a member today at Radiolab.org/donate.