Nav: Home

Biophysicists find 'extra' component in molecular motor

January 29, 2020

Researchers from the Moscow Institute of Physics and Technology have discovered an additional component in ATP synthase, a molecular machine that produces the energy-conserving compound in all cellular organisms. The new unique features of the ATP synthase structure are described in detail in a paper in Scientific Reports.

In order to store energy, living cells rely on a molecule called ATP. It is produced by ATP synthase, a molecular-scale motor comprised by a rotor and a stator. Such machines are nested in the inner membranes of mitochondria and chloroplasts in most organisms, including animals, plants, and bacteria. The rotor component resembles a barrel embedded into a biological membrane. This "barrel," or C-ring, is made of between eight and 17 so-called protomers. Their exact number depends on the organism.

MIPT researchers and their colleagues from Grenoble, France, have obtained a first-ever high-resolution structure of the C ring from spinach chloroplasts. As the 3D computer model of the C ring was taking shape, the biophysicists spotted something peculiar.

"We noticed additional circle-shaped elements inside the C ring," said MIPT doctoral student Alexey Vlasov from the Institute's Research Center for Molecular Mechanisms of Aging and Age-Related Diseases. "At first we thought that was an artifact. But when we looked through the C ring structures obtained by other scientists for various organisms, the circles turned up again, time after time."

It came as a surprise for the researchers that previous studies did not pay attention to the circles inside C rings. Up until now, their nature remained unexplained.

"This study speaks to the fact that no minor detail is negligible in science. Even a subtle feature, spotted in due course, might lead to a breakthrough discovery," noted Valentin Gordeliy, who heads research groups at the Institute of Structural Biology in Grenoble (France) and Jülich Research Center (Germany) and is the scientific coordinator of the MIPT Research Center for Molecular Mechanisms of Aging and Age-Related Diseases.

The biophysicists from MIPT set out to solve the C ring puzzle. Computer modeling and biochemical experiments indicated that the ring contained quinone molecules. They act as electron carriers in biological systems. Some of the examples are plastoquinone, found in chloroplasts, and the coenzyme Q in mitochondria.

Biologists have long known that the C ring of ATP synthase does not have a "hole" in it. So while some molecules were expected to exist on the inside, no one was sure which exactly. The finding proved unexpected: quinones.

While the discovery is interesting in and of itself, researchers have yet to determine why the C ring hosts quinones and how they get there. One theory suggests C rings can function as pores in mitochondrial membranes. Such a pore might open when the cell death process is initiated. Can the quinones in a C ring kill a cell? This is a question for the MIPT biologists to address in their further research.
-end-
This study was supported by the Russian Science Foundation, the Russian Foundation for Basic Research, and the Ministry of Education and Science of the Russian Federation.

Moscow Institute of Physics and Technology

Related Chloroplasts Articles:

UC Davis researchers reveal molecular structures involved in plant respiration
A study published today (Aug. 25, 2020) in eLife provides the first-ever, atomic-level, 3D structure of the largest protein complex (complex I) involved in the plant mitochondrial electron transport chain.
Day in, day out: Targeting the daily magnesium "rhythm" can optimize crop yield
Many processes of photosynthesis, including the intake of magnesium, follow a pattern of variation over 24 hours.
Enzymes as double agents: New mechanism discovered in protein modification
Proteins take on an important function in photosynthesis. In order to be able to work purposefully, they change their chemical form after they have been produced in a cell.
Moss protein corrects genetic defects of other plants
Almost all land plants employ an army of molecular editors who correct errors in their genetic information.
Revisiting energy flow in photosynthetic plant cells
By developing innovative methods to visualize energy changes in subcellular compartments in live plants, the team of Dr Boon Leong LIM, Associate Professor of the School of Biological Sciences of The University of Hong Kong, recently solved a controversial question in photosynthesis: what is the source of NADH (Reduced Nicotinamide adenine dinucleotide) for mitochondria to generate ATP (Adenosine triphosphate)?
Photosynthesis in a droplet
Researchers develop an artificial chloroplast.
Synthetic chloroplast enables light-powered CO2 fixation in artificial biological systems
Combining microfluidics and the natural photosynthetic membranes from spinach plants, researchers have developed 'synthetic chloroplasts,' which are capable of mimicking complex and life-like photosynthetic processes, a new study reports.
Mutation reduces energy waste in plants
In a way, plants are energy wasters: in order to protect themselves from excessive electron transport, they continuously quench light energy and don't use it for photosynthesis and biomass production.
Plant physiology: Safeguarding chloroplasts from sunburn
Intense sunlight damages the chloroplasts that are essential for photosynthesis, and generates toxic products that can lead to cell death.
Unexpected discovery: Blue-green algae produce oil
Cyanobacteria -- colloquially also called blue-green algae - can produce oil from water and carbon dioxide with the help of light.
More Chloroplasts News and Chloroplasts Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.