Nav: Home

Molecular motors direct the fate of stem cells

January 29, 2020

Scientists at the University of Groningen and the University Medical Center Groningen used molecular motors to manipulate the protein matrix on which bone marrow-derived mesenchymal stem cells are grown. Rotating motors altered the protein structure, which resulted in a bias of the stem cells to differentiate into bone cells (osteoblasts). Without rotation, the stem cells tended to remain multipotent. These results, which could be used in tissue engineering, were published in Science Advances on 29 January.

'Cells are sensitive to the structure of the surface that they attach to,' explains Patrick van Rijn, associate professor in Materiobiology and Nanobiomaterials. 'And movement is an important driver in biology, especially continuous movement.' That is why Van Rijn and Feringa and their colleagues decided to use molecular motors to manipulate the protein matrix on which stem cells are grown. The light-driven motor molecules were designed by the 2016 Nobel Laureate in Chemistry Ben Feringa.

Structural changes

The scientists linked molecular motors to a glass surface. Subsequently, the surface was coated with protein and either exposed to UV irradiation to power the motors or not exposed to it at all. After about an hour, the motor movement was stopped and cells were seeded onto the protein layer and left to attach. Finally, differentiation factors were added. These experiments showed that cells grown on protein that was submitted to the rotary motion of the molecular motors tended to specialize into bone cells more often, while cells seeded on protein that was not disturbed were more inclined to maintain their stem-cell properties.

Observations of the protein layer using atomic force microscopy and simulations of the interaction between the motor molecules and proteins, performed by Prof. Marrink's research group, showed that the movement induced subtle structural changes in the protein matrix. 'The movement of motor molecules interferes with the alpha-helices in the proteins, which causes structural changes,' explains Van Rijn. He compares it to the difference in texture between an unwhipped egg white and a whipped one.

Cell fate

The change in the surface structure of the adhered protein affects how the cells attach, for example how much they stretch out. This sets off a signaling cascade that eventually leads to altered behavior, such as the differentiation into bone cells. Thus, molecular movement leads to nanoscopic changes in surface structure, which in turn leads to differences in cell attachment, cell morphology and eventually, cell differentiation. 'It's like a domino effect, where smaller stones consecutively topple slightly larger ones so that a large effect can be achieved with a small trigger.'

'Changing the properties of a surface to affect cell fate has been used before,' says Van Rijn. However, this was done primarily with switches, so there was just a change from one state to another. 'In our study, we had continuous movement, which is much more in line with the continuous motion found in biological transport and communication systems. The fact that the motors are driven by light is important,' Van Rijn adds. 'Light can be carefully controlled in space and time. This would allow us to create complex geometries in the growth matrix, which then result in different properties for the cells.' Therefore, light-controlled molecular motors could be a useful tool in tissue engineering.

Simple Science Summary

The surface on which cells are grown can affect their properties. Scientists have used molecular motors, which rotate when irradiated with light, to change the structure of a protein layer on which stem cells were seeded. These stem cells, derived from bone marrow, can form different cell types or they can remain stem cells. The movement of the motors primed the stem cells to transform more efficiently into bone cells. This technique could be used to dynamically control cellular behavior on surfaces and create complex cell layers and tissues with different cell types by changing the properties of the protein layer at specific places.
-end-
Reference: Qihui Zhou, Jiawen Chen, Yafei Luan, Petteri A. Vainikka, Sebastian Thallmair, Siewert J. Marrink, Ben L. Feringa, Patrick van Rijn: Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells. Science Advances, 29 January 2020.

University of Groningen

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.