Nav: Home

Prescribed burns benefit bees

January 29, 2020

Freshly burned longleaf pine forests have more than double the total number of bees and bee species than similar forests that have not burned in over 50 years, according to new research from North Carolina State University.

For many forests, fire is as essential as rainfall. But while several studies have outlined the benefits of human-controlled prescribed burns on forest ecosystems, little was understood about how prescribed burns, or fires in general, may impact pollinators.

"There is global concern about the decline of insects in general, and pollinators in particular, so it's really important for land managers to understand how prescribed fire affects insect communities," says Elsa Youngsteadt, co-author of a paper on the work and an assistant professor in NC State's Department of Applied Ecology.

"Given the importance of fire in maintaining longleaf pine ecosystems overall, you would expect it to be good for the region's native bees. But it's also easy to imagine small bees and their nests, especially nests in twigs and stems, just getting incinerated. We weren't sure where we would find the most robust pollinator community."

NC State researchers worked with the Walthour-Moss Foundation's longleaf pine savannah reserve, which was established to protect this endangered pine. The reserve regularly burns 90% of its plots in 3-year cycles, while the remaining 10% of plots have not been burned for at least 50 years. This provided an ideal opportunity to compare bee abundance and diversity between unmanaged and managed ecosystems.

"The southeastern U.S. has some of the highest lightning strike rates in the world, which used to contribute to low-intensity fires passing through the longleaf pine savannas every 2 or 3 years," Youngsteadt says. "But agriculture, development, and logging fragmented this landscape and blocked the movement of fire."

For this study, researchers placed bee "traps" at 16 sites: four that had been burned the year of sampling, four that had been burned one year before sampling, four that had been burned two years before sampling, and four unburned control sites.

The researchers found that burned sites supported 2.3 times more total pollinators than plots that had not burned in 50 years. Burned sites also had 2.1 times as many different bee species as unburned sites. Within those burned areas, bee abundance and diversity tended to be greatest at sites that were most recently burned, and this abundance and diversity decreased with time since the last fire.

But why?

Fires maintain openings in the forest canopy, reduce ground cover and release nutrients into soils at the same time, creating the perfect environment for large blooms, increasing the flower resources pollinators rely on. The study also found that the low-intensity prescribed burns did not reduce the amount of nesting material for above-ground nesting pollinators, and the abundance of above-ground nesting pollinators was not impacted by the fires. Meanwhile, below-ground nesting species appeared to benefit from the increased access to bare soil.

"It's great news that prescribed fire, as currently used in longleaf pine savannas, is helping to support the pollinator community," Youngsteadt says. "But there's still a lot to learn. For example, the fires in this study were set in the winter, but many land managers use summer burns. Knowing the effects of fire in different seasons will be an important next step, as will knowing the optimal area of land to burn at any one time."
-end-
The paper, "The Impact of Prescribed Burning on Native Bee Communities (Hymenoptera: Apoidea: Anthophila) in Longleaf Pine Savannas in the North Carolina Sandhills," is published in the journal Environmental Entomology. The paper was co-authored by Heather Moylett of NC State's Department of Entomology and Plant Pathology, and by Clyde Sorenson, Alumni Association Distinguished Undergraduate Professor of Entomology at NC State. All authors contributed to the work equally. The research was funded by the Walthour-Moss Foundation.

North Carolina State University

Related Bees Articles:

Bees point to new evolutionary answers
Evolutionary biology aims to explain how new species arise and evolve to occupy myriad niches -- but it is not a singular or simplistic story.
Quantifying objects: bees recognize that six is more than four
A new study at the University of Cologne proves that insects can perform basic numerical cognition tasks.
Prescribed burns benefit bees
Freshly burned longleaf pine forests have more than double the total number of bees and bee species than similar forests that have not burned in over 50 years, according to new research from North Carolina State University.
Insecticides are becoming more toxic to honey bees
Researchers discover that neonicotinoid seed treatments are driving a dramatic increase in insecticide toxicity in U.S. agricultural landscapes, despite evidence that these treatments have little to no benefit in many crops.
Neonicotinoids: Despite EU moratorium, bees still at risk
Since 2013, a European Union moratorium has restricted the application of three neonicotinoids to crops that attract bees because of the harmful effects they are deemed to have on these insects.
Bees 'surf' atop water
Ever see a bee stuck in a pool? He's surfing to escape.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
Where are the bees? Tracking down which flowers they pollinate
Earlham Institute (EI), with the University of East Anglia (UEA), have developed a new method to rapidly identify the sources of bee pollen to understand which flowers are important for bees.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Trees for bees
Planting more hedgerows and trees could hold the key to helping UK bees thrive once again, a new study argues.
More Bees News and Bees Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.