Nav: Home

Meteorites reveal high carbon dioxide levels on early Earth

January 29, 2020

Tiny meteorites no larger than grains of sand hold new clues about the atmosphere on ancient Earth, according to scientists.

Iron micrometeorites found in ancient soils suggest carbon dioxide made up 25 to 50 percent of Earth's atmosphere 2.7 billion years ago, and that pressure at sea level may have been lower than today, Penn State researchers said.

The meteorites melted as they streaked through the atmosphere and oxidized as they encountered atmospheric gases. Evidence of the oxidation remains on the tiny fragments that landed on Earth. The samples serve as a unique proxy for conditions in the upper atmosphere, the scientists said.

"This is a promising new tool for figuring out the composition of the upper atmosphere billions of years in the past," said Rebecca Payne, a doctoral candidate in geosciences and astrobiology at Penn State. Payne is lead author of the study, published recently in the journal Proceedings of the National Academy of Sciences.

The work builds on previous studies of the micrometeorites that suggested free oxygen molecules in the upper atmosphere oxidized the meteorites. Those findings would require oxygen levels on ancient Earth to be near modern day levels, a surprising conclusion that contradicts conditions expected on the young planet, Payne said.

The researchers conducted a new analysis using photochemical and climate models and determined carbon dioxide, not oxygen, likely served as the main oxidant. For this to be possible, they found carbon dioxide had to comprise at least 25 percent of the atmosphere.

Those levels of carbon dioxide would suggest a warm planet, but other climate evidence finds Earth was cool at the time and partly covered by glaciers. Lower nitrogen levels resulting in lower pressure would allow for both high carbon dioxide levels and cool conditions.

"There are data, referenced in our paper, that support lower nitrogen concentrations during this time," said Jim Kasting, Evan Pugh University Professor in the Department of Geosciences at Penn State and Payne's adviser. "Our study of micrometeorite oxidation falls in line with that interpretation. The possibility that our major atmospheric gas, nitrogen, was less abundant in the distant past is really intriguing."

The findings may help reconcile disagreements in previous studies on carbon dioxide in the deep past and climate model estimates, according to the researchers.

Previous estimates of carbon dioxide levels from billions of years ago rely on paleosols, or ancient soils, which may better reflect conditions in the lower atmosphere. Regional differences like weather or ground cover also can impact paleosols samples, and the findings from these studies often contradict each other and climate models, the scientists said.

"It was getting difficult to figure out where the agreement should have been between different paleosol studies and climate models," Payne said. "This is interesting, because it's a new point of comparison. It may help us find the right answer about atmospheric carbon dioxide in the deep past."
-end-
Don Brownlee, professor at the University of Washington, also contributed to this research.

Penn State

Related Nitrogen Articles:

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.