Nav: Home

Microscopic partners could help plants survive stressful environments

January 29, 2020

Tiny, symbiotic fungi play an outsized role in helping plants survive stresses like drought and extreme temperatures, which could help feed a planet experiencing climate change, report scientists at Washington State University.

Recently published in the journal Functional Ecology, the discovery by plant-microbe biologist Stephanie Porter and plant pathologist Maren Friesen sheds light on how microbe partners can help sustainably grow a wide variety of crops.

Tiny partners in plant survival

While some microscopic fungi and bacteria cause disease, others live in harmony with plants, collecting water and nutrients in exchange for carbohydrates, or changing plants' internal and external environment in ways that help plants grow.

These benefits help plants tolerate stresses that come from their environment. Dubbed abiotic stresses, challenges such as drought, extreme temperatures, and poor, toxic, or saline soils are among the leading causes of crop loss and decreasing farm productivity.

"Plants' abilities to tolerate stress are impacted by the bacteria and fungi that live on or inside them and make up the plant microbiome," said Porter, assistant professor in the School of Biological Sciences. "Just like how microbes in our digestive system help keep us healthy, microbes play an incredibly important role in plant health."

Setting out to measure how beneficial microbes affect plants under both normal conditions and stress, Porter and Friesen reviewed 89 research experiments ranging from common Northwest food crops to wild species.

Working with colleagues at Michigan State University and WSU, they compared five different classes of symbiotic bacteria and fungi that live on, in, and around plant roots, under stresses that included fungal diseases, grazing by animals and microscopic worms, heavy metal contamination, and drought, cold, and saline soils. Then, they tallied the effect on plant growth, biomass and yield.

Results showed that while beneficial bacteria are more helpful in normal conditions, symbiotic fungi provide added benefits during crises.

"Stress makes these fungi even more important to plants, which we think is really interesting," said Friesen, assistant professor in the Department of Plant Pathology.

Particularly beneficial were arbuscular mycorrhizal fungi, which colonize plant roots, provide water, and enhance uptake of nitrogen, phosphorus, and other micronutrients in the soil.

"Should growers want to foster the plant microbiome for stress resistance, our study suggests they should really focus on fungi," Porter said. "These beneficial microbes could be the key to helping us grow more food in the coming decades."

A greener solution to stress

With earth's population predicted to top 9 billion by 2050, scientists predict that current crop yields will need to double.

"As we expand where we grow crops, we're using marginal areas that are more stressful for plants," Porter said. "And as our climate changes, that creates stress for plants.

"Maren and I wanted to be forward-looking," she added. "We wanted to find evidence of how we can best use beneficial microbes to mitigate the stresses that we know are coming."

Microbes offer a more sustainable tool for stress tolerance than applying hormones or chemicals, noted Friesen.

"Farmers are now having challenges with pathogens no longer responding to chemical treatments," she said. "There's already a lot of interest in scientific and industry circles in identifying and harnessing microbial solutions to agricultural problems. This study gives us ideas about where to look."
-end-


Washington State University

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.