Arctic warming and diminishing sea ice are influencing the atmosphere

January 29, 2021

The researchers of the Institute for Atmospheric and Earth system research at the University of Helsinki have investigated how atmospheric particles are formed in the Arctic. Until recent studies, the molecular processes of particle formation in the high Arctic remained a mystery.

During their expeditions to the Arctic, the scientists collected measurements for 12 months in total. The results of the extensive research project were recently published in the Geophysical Research Letters journal.

The researchers discovered that atmospheric vapors, particles, and cloud formation have clear differences within various Arctic environments. The study clarifies how Arctic warming and sea ice loss strengthens processes where different vapors are emitted to the atmosphere. The thinning of sea ice enables more iodine emissions while broader open waters enable more emissions of sulfur-containing vapors.

Higher concentrations of vapors result in a higher amount of particles. This on the other hand will lead to more clouds, which can - depending on the season and location - either slow down or accelerate the Arctic warming. Detailed knowledge of these processes is crucial in order to understand the consequences of global warming.

"Our observations are contributing to further understanding of what happens in the Arctic atmosphere due to warming. In general, atmospheric particles and clouds play an important role in regulating the atmosphere's temperature, and any changing behavior of these has consequences on Arctic warming. Arctic areas are especially sensitive to changes in cloudiness and albedo", says Lisa Beck, a doctoral student at the Institute for Atmospheric and Earth System Research (INAR).

More in­for­ma­tion about the fu­ture of melt­ing sea ice

The researchers conducted measurements in Northern Greenland at Villum research station and in Svalbard at Ny-Ålesund for 6-months at each station. While both sites are located at similar latitudes, about 1000 km south of the North Pole, their environments are very different. Villum-station is surrounded by sea ice all year round, while the warm sea currents cause the sea around Ny-Ålesund to remain open.

In Northern Greenland the researchers discovered that in the spring after the Polar night the microalgae below the sea ice started to emit iodine compounds to the atmosphere. As the spring continues, the thinning sea ice leads to the emission of even more iodine compounds. These compounds form molecular clusters that can grow into bigger particles.

In Svalbard, surrounded by open waters, the observations showed how sulfur-compounds emitted by phytoplankton could form a large amount of particles that could grow fast, and can even form cloud droplets. In the studies of Svalbard also organic compounds were detected.

The large amount and role of organic compounds in the Arctic particle formation surprised the researchers.

"We did not expect to observe many organic vapors in the cold and bare Arctic environment as they have been mainly seen in areas covered by forests. We are planning to continue the studies in Svalbard to figure out what these organic compounds are and where they are coming from", Beck says.

The particle concentrations in Svalbard were clearly higher than the ones measured in Northern-Greenland.

"Currently, the Arctic sea ice is melting fast. As a result, we can assume that the processes observed in Svalbard will be more common in the Arctic areas that will be liberated from sea ice", Beck says.
The published research is connected to the recent Polarstern studies that have continued the studies in the high Arctic in the middle of sea ice areas.

More information:

Lisa Beck
Doctoral student, University of Helsinki
Institute for Atmospheric and Earth System Research (INAR)

Nina Sarnela
Postdoctoral researcher, University of Helsinki
Institute for Atmospheric and Earth System Research (INAR)

Mikko Sipilä
Associate professor, University of Helsinki
Institute for Atmospheric and Earth System Research (INAR)

Read more: The Polar and arctic atmospheric research group

University of Helsinki

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to