Local emissions amplify regional haze and particle growth

January 29, 2021

New particle formation (NPF) is a major source of aerosol particles in the global atmosphere. In polluted megacities, such as Beijing, the role of new particle formation events and their contribution to haze formation through subsequent growth is still unclear.

To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, the research teams led by Prof. Yele Sun with the Institute of Atmospheric Physics at the Chinese Academy of Sciences and Prof. Markku Kulmala with the University of Helsinki performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015-2017. Their study was recently published in npj Climate and Atmospheric Science.

"The haze formation is initiated by the growth of freshly formed particles at both ground level and city aloft. However, the haze was more severe at ground level because of higher particle growth rates due to the impacts of local primary particles and gaseous precursors." said Prof. Sun.

According to Prof. Sun, the particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability. It in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level.

The team further complemented the field observations with NAQPMS+APM model analyses, and found that the haze associated with NPF and growth was formed on a regional scale in Beijing-Tianjin-Hebei area. Prof. Sun said, "The growth of NPF-originated particles accounts for up to ?60% of the accumulation mode particles, and drives the haze formation in the Beijing-Tianjin-Hebei area."

The team also performed simulations on how emission reductions would affect haze development. "Concentration of both primary and secondary particles in the accumulation mode would decrease drastically, and the haze formation would be reduced if the emission cuts are higher than 30%." Concluded Prof. Sun. "Our results show that a reduction in anthropogenic gaseous precursors can suppress particle growth, and therefore is a critical step for haze alleviation."

Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Sun Articles from Brightsurf:

Understanding the power of our Sun
For the first time, the international team was able to directly observe neutrinos from this cycle (CNO neutrinos) with the Borexino detector in the Laboratori Nazionali in the Gran Sasso Massif (Italy).

Addicted to the sun? Research shows it's in your genes
Sun-seeking behaviour is linked to genes involved in addiction, behavioural and personality traits and brain function, according to a study of more than 260,000 people led by King's College London researchers.

Sun is less active than similar stars
By cosmic standards the sun is extraordinarily monotonous. This is the result of a study presented by researchers from the Max Planck Institute for Solar System Research in the upcoming issue of Science.

How plants protect themselves from sun damage
MIT chemists have observed, for the first time, one of the possible mechanisms that have been proposed for how plants dissipate energy when they are exposed to excess sunlight.

How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.

View of the Earth in front of the Sun
An international research team led by the University of Göttingen has discovered two new Earth-like planets near one of our closest stars.

As hot as the sun's interior
Physicists at the Friedrich Schiller University Jena (Germany) have developed a new method for producing plasma, enabling them to deal with some of the problems that stand in the way of this extremely difficult process.

The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.

Evidence for a new fundamental constant of the sun
New research undertaken at Northumbria University, Newcastle, shows that the sun's magnetic waves behave differently than currently believed.

Freshwater turtles navigate using the sun
Blanding's turtle hatchlings need only the sun as their compass to guide them on their way to the nearest wetland -- and a place of safety.

Read More: Sun News and Sun Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.