Yangtze River observational system to improve East Asian rainy season forecasting

January 29, 2021

Researchers have completed the first ever multi-level hydrological tracking of the Yangtze River from the ground, air and space in order to investigate the properties of cloud formation during the mei-yu--an intense rainy season that forms part of East Asia's summer monsoon. The effort should permit greater understanding of the mei-yu precipitation process and thus enable much more accurate forecasts of this key meteorological phenomenon in the region.

The mei-yu, also known as the "Plum Rain", is a period of severe, concentrated rainfall that lasts for up to two months during the late spring and early summer, covering mainland China, Taiwan, Japan and Korea.

This intense weather phenomenon arises from interactions between systems of convection (transfer of heat within a fluid) at multiple, mid-range or "mesoscale" levels, ranging from 2-20 km up to 20-200 km. These are considered mesoscale because they develop at a larger level than "microscale", or under 1 km-sized phenomena, such as small, fleeting, cloud "puffs", but still smaller than "synoptic scale" phenomena over 1000 km such as cyclones.

Conventional observations cannot deliver the detailed spatial and temporal variations that exist within such mid-ranking multi-scale convective systems. Nor can they describe their cloud structures or "microphysical" processes and properties. As a result, researchers with the Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, at the China Meteorological Administration's Institute of Heavy Rain, organized an ambitious monitoring effort that itself works at multiple levels along the middle and lower reaches of the Yangtze River.

The Integrative Monsoon Frontal Rainfall Experiment (IMFRE-II) took place during ten heavy rainfall events of the 2020 mei-yu and employed ground-based, airborne and satellite observations.

"Last year's mei-yu was a particularly extreme one that broke records," said meteorologist Chunguang Cui, lead author of the study, published on Jan 5 in the journal Advances in Atmospheric Physics. It lasted 44 days, some 19 days longer than average--the eighth longest mei-yu since 1951, at a greater than normal intensity, and over a larger area. "This was a gift in terms of the data we were able to gather."

The campaign involved the use of seven aircraft flights measuring various attributes of ice particles, cloud droplets and raindrops at various altitudes, as well as seven grown-based observation systems and global precipitation measurement (GPM) satellites.

IMFRE-II followed on from IMFRE-I, which was conducted in 2018 over the middle reaches of the Yangtze. In 2022, the researchers hope to carry out a third such effort.

In combination, the three field campaigns will allow the researchers to investigate the microphysical properties of clouds and precipitation in a mei-yu, and significantly improve the computer models describing how the mei-yu system forms and later disperses. This will in turn give a big boost to the accuracy of mei-yu forecasts, of enormous benefit to the agricultural sector and flood protection planning.
-end-


Institute of Atmospheric Physics, Chinese Academy of Sciences

Related Precipitation Articles from Brightsurf:

Convection-permitting modelling improves simulated precipitation over the Tibetan Plateau
A China-UK research team explains the possible reasons for excessive precipitation over the TP in the mesoscale convection-parameterized models.

Spread of monsoon circulation changes explains uncertainty in global land monsoon precipitation projection
A new study emphasizes the importance of reliable prediction of circulation changes, to ensure that future projections of global land monsoon are suitable for use by policy makers.

GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations
GMMIP simulations on global monsoon interannual variability show higher skill than historical simulations.

The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.

Scientists find key factors impacting sideswiping tropical cyclone precipitation
Scientists find that the distribution of sideswiping tropical cyclones precipitation(STP) includes extreme STP events that appear not only over the island and coastal areas, but also over inland areas

Rainy season tends to begin earlier in Northern Central Asia
The researchers found robust increase of annual mean precipitation at the end of the 21st century under all modelling scenarios over northern central Asia.

Using cloud-precipitation relationship to estimate cloud water path of mature tropical cyclones
Scientists find the cloud water path of mature tropical cyclones can be estimated by a notable sigmoid function of near-surface rain rate.

Precipitation will be essential for plants to counteract global warming
A new Columbia Engineering study shows that increased water stress--higher frequency of drought due to higher temperatures, is going to constrain the phenological cycle: in effect, by shutting down photosynthesis, it will generate a lower carbon uptake at the end of the season, thus contributing to increased global warming.

Fall precipitation predicts abundance of curly top disease and guides weed management
Transmitted by an insect known as the beet leafhopper, curly top disease is a viral disease affecting many crops, including melons, peppers, sugar beets, and tomatoes.

Study confirms climate change impacted Hurricane Florence's precipitation and size
A new modeling framework showed that Hurricane Florence produced more extreme rainfall and was spatially larger due to human-induced climate change.

Read More: Precipitation News and Precipitation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.